
1

W3C, ATSC and DASH
Streaming Media

August-2015

28/22/2015

Moving to IP-based streaming will benefit broadcast services

− Leverage existing IP-based ecosystem

− Not just basic equipment (e.g. routers), but developers as well (particularly web)

− Opens the door to hybrid content delivery

− Use broadcast for wide area delivery of base forms of content (audio/video/captions)

− Leverage broadband for specialized content delivery

− Personalized content (e.g. additional language tracks, accessibility)

DASH has provided a scalable solution for broadband media delivery

− So what has to happen to make this work for broadcast-only and hybrid?

W3C and ATSC are trying to address these topics, but DASH community needs to provide

more guidance

− Particularly in the areas of personalization (e.g. in context of ad insertion)

Overview

38/22/2015

Key enablers introduced in HTML5 timeframe

− HTMLMediaElement, including <video> tag

− Allows for playback of video (streaming, file-based, etc.) without requirement for plug-ins

− Media Source Extensions (MSE)

− Allows for adaptation of <video> source buffer

− Necessary for DASH-style rate adaptation

− Encrypted Media Extensions (EME)

− Incorporates common encryption (CENC) into <video>

Dovetailed nicely with DASH.js development

Some areas which could be explored further

− Rate adaptation metrics in browser (e.g. alternatives to Navigation Timing)

− Recording API’s

− Compatibility with redistribution mechanisms such as WebRTC

W3C Technology Development has Complimented DASH

48/22/2015

Sizeable interest exists in applying HTML5 technologies to rendering of streaming media over

broadcast

Technologies such as HbbTV 2.0 (and OIPF DAE) have started to move in this direction, but

not to the extent that DASH.js is fully applicable as a reference design in these environments

ATSC 3.0 has adopted a full IP transport and allows for compatibility with DASH.js-derived

reference clients

− Runtime environment can be based on off-the-shelf browser that can retrieve broadcast content from web

proxy integrated in broadcast receiver

There are some technical challenges in certain areas that require additional technical

solutions on top of any javascript DASH player

− DASH eventing

− Channel/program change

− Ad insertion

Broadcast Compatibility

58/22/2015

DASH events are a means for indicating interactivity timed with the media

DASH events may be conveyed via the MPD or through the ‘emsg’ box in the ISO BMFF media

track

Neither mechanism is well-suited for HTML5

− MPD eventing requires the application (HTML/JS) to execute the events as per media playback time

− Application may not have time-accurate insight into media playback status

− Places dependency on MPD generator (usually resident with broadcaster)

− emsg eventing support is non-existent in current browsers

− Even if browsers propagated emsg data into JS, the event handler in the application can become a bottleneck

There is also the possibility to embed DASH events into text tracks (e.g. TTML, WebVTT)

− <video> implementation would have to propagate event to application layer for handling – a potential source

of delay

DASH Eventing

68/22/2015

Solutions such as HbbTV allow for association of a broadcaster-application to a streaming

service

− Upshot is that a specific application may be launched upon a channel change or a program change that would

handle rendering of streaming media

If the application renders streaming media using a library like DASH.js, will there be intolerably

long interruptions in media playback?

− Playback interruption affected by radio functions (frequency tuning, service acquisition), but could also be

affected as a result of initialization of new <video> instance

Therefore ATSC 3.0 is considering the use of ‘always on’ DASH clients that render media

directly from the broadcast receiver

− Use of DASH.js is possible, but would be abstracted from the service-bound application

Channel/Program Change

78/22/2015

Channel/Program Change (cont.)

Channel

Selector
ATSC 3.0
Receiver

DASH
Client

Service
Selection

MPD URL
Decoder

Media

Broadcaster

Application

Launch Broadcaster App

· Get MPD
· Get Media

Segments

Embedded Media Player

88/22/2015

Broadcaster desire to drive client-side ad insertion

− Example criteria for ad selection: geolocation, accessibility settings on broadcast receiver

DASH-IF guidelines for ad insertion can work in this context

− Use of Xlink resolution in MPD

− Xlink in the MPD context is a hyperlink to a remote period description

Use of embedded DASH clients (as depicted on previous slide) can present issues

− Embedded DASH client has visibility into MPD and can alert broadcaster application about the need to

resolve an Xlink

− Will the embedded DASH client alert the app in a timely manner? Will the broadcaster app respond in time?

Ad Insertion

Personalization App

running in Web

Runtime Engine

Embedded DASH

Client
Broadcast Receiver

MPD

Segments

Ad Resolution Request

Response (remote period)

98/22/2015

Javascript DASH clients are well-suited for broadband content

− DASH.js has gone a long way to establishing this

W3C enablers for streaming media and reference Javascript Dash clients (DASH.js) can be

used in broadcast context, but there are issues to consider

− Is potential media disruption due to channel change significant?

− Potential solutions (e.g. embedded DASH clients) present challenges as well (particularly ad selection)

W3C has ongoing TV control API effort that could provide a browser-friendly way of handling

broadcast streaming

− Generalized to cover many different types of broadcast content delivery (MPEG2-TS, ATSC, etc.)

DASH community should not just consider live streaming requirements going forward, but

also the impact to web runtime engines

− Personalization for broadcast content may pose challenges, but hybrid services brings new opportunities

Summary

