

New Candidate Technical Specification

 DASH-IF CTS Part XX rev 0 Current version: 0.9.0

Status: Draft Internal Review X Community Review Editor’s Proposal Agreed

Title: DASH-IF Forensic A/B Watermarking

Source: DASH-IF Interoperability Working Group
DASH-IF Content Protection and Security TF

Supporting
Companies:

Nagra, Akamai, AWS, Irdeto, Synamedia, Verimatrix

Category: Candidate Technical Specification Date: 2023-02-02

Abstract: The scope of this work is the definition of an architecture and an Application
Programming Interface (API) for supporting A/B forensic watermarking for Over-
The-Top (OTT) on content that is delivered in an Adaptive Bitrate (ABR) format. To
the possible extend, the proposed solutions do not make assumptions on the ABR
technology that is being used, it can be for example, DASH or HLS. A/B forensic
watermarking means that at least two watermarked versions of content (variant A
and variant B) are delivered up to a CDN edge server from the encoder. The edge
server is responsible for delivering either the A or B variant of every segment to the
device.
While digital watermarking can be used for different use cases, this work will focus
on forensic use cases. In this context, it is used to define the origin of content
leakage. The watermarking technology modifies media content in a robust and
invisible way in order to encode a unique identifier, e.g., a unique session ID. The
embedded watermark provides means to identify where the media content, that has
been redistributed without authorization, is coming from. In other words, the
watermark is used to forensically trace the origin of content leakage.

Disclaimer: This document is a candidate Technical Specification. DASH-IF is expecting to
publish this initially, but to submit the specification to a formal specification
organization. The primary choice is ETSI, for which DASH-IF has a PAS
agreement.

This document is not yet final. It is provided for public review until the deadline
mentioned below. If you have comments on the document, please submit
comments by one of the following means:

- at the github repository https://github.com/Dash-Industry-
Forum/Watermarking/issues, or

- the mailing list at iop@dashif.org
Please add a detailed description of the problem and the comment.

Based on the received comments a final document will be published latest by the
expected publication date below if the following additional criteria are fulfilled:

- All comments from community review are addressed
- A time plan for test, conformance and reference tools are available. This

includes availability of test services and an implementation oin the dash.js
reference tools

Commenting
Deadline:

Feb 28, 2023

Expected
Publication:

Mar 31, 2023

Other Comments This document is pending registration of CBOR tags and claims integer keys
registration with IANA and 4CC code registration with MP4RA. The values provided
in the documents are only indicative and may change with the final version.

DASH-IF CTS 00XX V0.9.0 (2023-02)

DASH-IF Candidate Technical Specification:
DASH-IF Forensic A/B Watermarking
An interoperable watermarking integration schema

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 4

DASH Industry Forum

3855 SW 153rd Dr.

Beaverton, OR 97003 - USA

Email : admin@dashif.org

Important notice

The present document can be downloaded from:
http://www.dashif.org/guidelines

http://www.dashif.org/guidelines

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 5

Contents

Intellectual Property Rights .. 7

Foreword... 7

Modal verbs terminology ... 7

Executive summary .. 7

1 Scope .. 8

2 References .. 8
2.1 Normative references ... 8
2.2 Informative references ... 8

3 Definition of Terms, Symbols and Abbreviations .. 9
3.1 Terms ... 9
3.2 Symbols ... 9
3.3 Abbreviations ... 9

4 OTT Watermarking Using Variants ... 10

5 Server-Driven Architecture and Workflows .. 11
5.1 Introduction.. 11
5.2 Functional Architecture ... 11
5.3 System Configuration .. 11
5.4 WM Token ... 12
5.5 WMPaceInfo .. 14
5.5.1 Introduction .. 14
5.5.2 WMPaceInfo Data .. 15
5.5.3 Conveying WMPaceInfo .. 15
5.5.3.1 Introduction .. 15
5.5.3.2 Sidecar File ... 15
5.5.3.3 HTTP Header.. 17
5.5.3.4 ISOBMFF Box ... 17
5.5.3.5 SEI Message ... 18
5.5.3.6 TS Adaptation Field ... 18
5.6 Content Preparation ... 19
5.6.1 Introduction .. 19
5.6.2 Encoding Recommendations .. 19
5.6.3 Delivering Content and WMPaceInfo from the Encoder to the Packager .. 19
5.6.4 Segment Ingress Path Structure on the Origin ... 20
5.6.4.1 Introduction .. 20
5.6.4.2 Locating the Variants.. 20
5.6.4.3 Locating the Sidecar File .. 23
5.6.5 Packaging Recommendations... 25
5.7 Content Playback ... 25
5.7.1 Introduction .. 25
5.7.2 Dynamic Ad Insertion .. 26
5.7.3 WM Token, DASH Manifest and HLS Playlists Acquisition .. 26
5.7.4 Initialisation Segment Acquisition ... 27
5.7.5 Media Segments and WMPaceInfo Acquisition .. 28
5.7.5.1 General Requirements .. 28
5.7.5.2 WMPaceInfo Acquisition ... 28
5.7.5.3 Discrete Files .. 29
5.7.5.4 Byterange .. 31
5.8 Monitoring and Watermark Detection ... 33

Annex A: Vendor Specific Core API (normative) ... 34

A.1 Introduction .. 34

A.2 Edge-Vendor Specific API ... 34

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 6

Annex B: Examples of Workflows (informative) ... 35

B.1 Introduction .. 35

B.2 Live Content Flows .. 35

B.3 VOD Content Flows ... 37

Annex C: Code for Web Sequence Diagram (informative) .. 38

C.1 Introduction .. 38

C.2 Figure 6 .. 38

C.3 Figure 7 .. 38

C.4 Figure 8 .. 39

C.5 Figure 9 .. 39

Annex (informative): Change History .. 42

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 7

Intellectual Property Rights

Disclaimer

This is a document made available by DASH-IF. The technology embodied in this document may involve the use of

intellectual property rights, including patents and patent applications owned or controlled by any of the authors or

developers of this document. No patent license, either implied or express, is granted to you by this document. DASH-IF

has made no search or investigation for such rights and DASH-IF disclaims any duty to do so. The rights and

obligations which apply to DASH-IF documents, as such rights and obligations are set forth and defined in the DASH-

IF Bylaws and IPR Policy including, but not limited to, patent and other intellectual property license rights and

obligations. A copy of the DASH-IF Bylaws and IPR Policy can be obtained at http://dashif.org/.

The material contained herein is provided on an "AS IS" basis and to the maximum extent pe mitted by applicable law,

this material is provided AS IS, and the authors and developers of this material and DASH-IF hereby disclaim all other

warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied

warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of

responses, of workmanlike effort, and of lack of negligence.

In addition, this document may include references to documents and/or technologies controlled by third parties. Those

third-party documents and technologies may be subject to third party rules and licensing terms. No intellectual property

license, either implied or express, to any third-party material is granted to you by this document or DASH-IF. DASH-IF

makes no warranty whatsoever for such third-party material.

Note that technologies included in this document and for which no test and conformance material is provided, are only

published as candidate technologies, and may be removed if no test material is provided before releasing a new version

of this guidelines document. For the availability of test material, please check https://www.dashif.org.

Foreword

This Technical Specification (TS) has been produced by the DASH-IF Technical Working Group.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and

"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of

provisions).

"must" and "must not" are NOT allowed in deliverables except when used in direct citation.

Executive summary

This document describes proposed architecture and API for supporting forensic watermarking for Over-The-Top (OTT)

on content that is delivered in an Adaptive Bitrate (ABR) format. To the possible extend, the proposed solutions do not

make assumptions on the ABR technology that is being used, it can be for example, DASH or HLS.

While digital watermarking can be used for different use cases, this document will focus on forensic use cases. In this

context, it is used to define the origin of content leakage. the watermarking technology modifies media content in a

robust and invisible way in order to encode a unique identifier, e.g., a unique session ID. The embedded watermark

provides means to identify where the media content, that has been redistributed without authorization, is coming from.

In other words, the watermark is used to forensically trace the origin of content leakage.

http://dashif.org/
https://www.dashif.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 8

1 Scope

The present document specifies DASH-IF Forensic A/B Watermarking.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or

non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the

referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at

https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee

their long-term validity.

The following referenced documents are necessary for the application of the present document.

[1] ISO/IEC 23009-1:2021 Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part

1: Media presentation description and segment formats.

[2] ISO/IEC 13818-1:2019 Information technology — Generic coding of moving pictures and associated audio

information — Part 1: Systems URL: https://www.iso.org/standard/75928.html

[3] R. Pantos. HTTP Live Streaming 2nd Edition. Internet Draft. URL:

https://datatracker.ietf.org/doc/html/draft-pantos-hls-rfc8216bis-09

[4] C. Bormann, P. Hoffman, Concise Binary Object Representation (CBOR), December 2020. Proposed

Standard. URL: https://www.rfc-editor.org/info/rfc8949

[5] H. Birkholz, C. Vigano, C. Bormann, Concise Data Definition Language (CDDL): A Notational Convention

to Express Concise Binary Object Representation (CBOR) and JSON Data Structures, June 2019. Proposed

Standard. URL: https://www.rfc-editor.org/info/rfc8610

[6] M. Jones, E. Wahlstroem, S. Erdtman, H. Tschofenig. CBOR Web Token (CWT). May 2018, URL:

https://www.rfc-editor.org/info/rfc8392

[7] S. Josefsson. The Base16, Base32, and Base64 Data Encodings. October 2006. URL: https://www.rfc-

editor.org/info/rfc4648

[8] UHD Forum, Watermarking API for Encoder Integration, version 1.0.1, March 2021. URL:

https://ultrahdforum.org/guidelines/

[9] The Open Group Base Specifications Issue 7, IEEE, Std 1003.1 2018 Edition, 31 January 2018. URL:

https://pubs.opengroup.org/onlinepubs/9699919799/

[10] DASH-IF registry of watermarking technology vendors IDs. URL:

https://dashif.org/identifiers/watermarking/

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or

non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the

referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee

their long term validity.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 9

The following referenced documents are not necessary for the application of the present document but they assist the

user with regard to a particular subject area.

[i.1] DASH-IF Live Media Ingest Protocol, URL: https://dashif-

documents.azurewebsites.net/Ingest/master/DASH-IF-Ingest.html

3 Definition of Terms, Symbols and Abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:

Client-driven watermarking: The action of watermarking content when the user device is performing some actions

allowing it to make unique requests for content. The user device embeds a watermarking agent that is integrated

with the application.

Client-side watermarking: The action of watermarking when the user device is the sole responsible for doing the

actual watermarking of content. The user device embeds a watermarking agent that is integrated with the audio-

visual rendering engine.

Server-driven watermarking: The action of watermarking content when the user device is not performing any

other operation than conveying information such as tokens, between servers that are responsible for doing the actual

watermarking of content that is delivered to the user device.

Sequencing: The action of returning a Variant of a segment when it is requested, based on a watermark token.

Typically, this action is performed on a CDN edge server and is thus referred to as “edge sequencing”.

Variant: An alternative representation of a given segment of a multimedia asset. Typically, a Variant is a pre-

watermarked version of the segment.

Watermark (WM) pattern: A series of A/B decisions for every segment that is unique per user device.

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ABR Adaptive Bit Rate

AES Advanced Encryption Standard

AF Adaptation Field

API Application Programming Interface

AVC Advanced Video Codec

CBOR Concise Binary Object Representation

CDN Content Delivery Network

CMAF Common Media Application Format

CWT CBOR Web Token

DAI Dynamic Ad Insertion

DASH Dynamic Adaptive Streaming over HTTP

DRM Digital Rights Management

HEVC High Efficiency Video Coding

HLS HTTP Live Streaming

HTTP Hypertext Transfer Protocol

IP Internet Protocol

ISOBMFF ISO Base Media File Format

JITP Just In Time Packager

JSON JavaScript Object Notation

MPD Media Presentation Description

OTT Over The Top

RIST Reliable Internet Stream Transport

RTMP Real-Time Messaging Protocol

RTP Real Time Protocol

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 10

SEI Supplemental Enhancement Information

SRT Secure Reliable Transport

TS Transport Stream

TV Television

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUID Universally Unique Identifier

VOD Video On Demand

WM Watermark

WMID Watermark Identifier

WMT Watermark Token

4 OTT Watermarking Using Variants

The objective of forensic watermarking is to deliver a unique version of a media asset to the different users consuming

the asset. This is somewhat in opposition with media delivery mechanisms that aim at delivering the same asset to all

users for efficiency purposes. As a result, in the broadcast era, a typical approach was to perform the watermarking

operation at the very last step of the media delivery pipeline, within the end user device e.g., a set-top box. This solution

has the virtue of leaving the whole media delivery pipeline unaltered but raises security and interoperability challenges

when a large variety of devices owned and operated by the end user shall be supported. This is for instance the case

with over-the-top (OTT) media delivery where content is consumed on mobile phones, tablets, laptops, connected TVs,

etc. As a result, new forensic watermarking solutions have gained momentum that do not perform security-sensitive and

complex operations in the end user realm. While such approaches require minimal changes in the end-user devices, they

do mandate the media delivery pipeline to be modified accordingly.

A notable example of such network-side watermarking solutions is OTT watermarking using Variants for adaptive

bitrate (ABR) content. In this case, the content is delivered by segments. The baseline idea is then to generate pre-

watermarked Variants of each segment and to modify the delivery protocol so that each end user receives a unique

sequence of Variants depending on a watermark pattern that has been assigned to the end user. The semantic of this

pattern is context dependent and can be, for instance, a device identifier, an account identifier, a session identifier, etc.

Figure 1 illustrates a particular case of this strategy, coined as A/B watermarking, where there are two Variants

generated for each segment, each Variant containing a watermark that either encodes the information ‘0’ or ‘1’. As a

result, the watermarking system will require the transmission of a sequence of Variants as long as the length of the

pattern to successfully recover the whole unique identifier.

Figure 1: A/B watermarking concept with (a) ABR content delivery and (b) A/B Variants delivery.

When using Variants, the serialization process essentially boils down to delivering a unique sequence of Variants to

each individual end user. There are two main families of methods to achieve this:

1. Server-driven methods, wherein the client does perform no operation related to watermarking. It simply

fetches and forwards a token to the CDN that is responsible for delivering a unique sequence of Variants.

Original asset

ABR segments at different
bitrates

Sequence of ABR segments

received by three users (a)

Original asset

A/B Variants of ABR segments at

different bitrates
Unique sequence of A/B Variants

received by three users (b)

Ingest Deliver

Alice

Bob

Charlie

Alice

Bob

Charlie

Ingest Deliver

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 11

2. Client-driven methods, wherein the client is responsible for the serialization operation. For instance, it relies

on some session-based digital object to tamper the URI ABR segments and thereby directly query a unique

sequence of Variants from the CDN.

This document is describing the server-driven methods. Client-driven methods are not part of this document.

5 Server-Driven Architecture and Workflows

5.1 Introduction

In the server-driven architecture, the device is unaware that content it consumes is watermarked. The device only

exchanges a token with servers allowing these servers, usually CDN edges, to make the decision on which A or B

Variant it delivers to the device. In this document, an end-to-end system is presented. It includes the definition of

watermarking metadata that limits the need for naming conventions by allowing the encoder to send this metadata all

the way to the edge through origins to enable the sequencing of bits. The following goes through the functional

architecture and describes the workflows when preparing content and when consuming content.

In the following, it is assumed that the edge is a CDN edge. There are optional architectures, but this does impact the

overall functional architecture and workflows. It is also assumed that multi-track content (audio and video multiplexed

in one segment) is out of the scope of this document. In addition, all the workflows are only examples of possible

implementations.

5.2 Functional Architecture

Figure 2 shows the simplified high-level functional architecture and the different interaction between the components

that are involved in the flows when a device consumes watermarked content. Note that this also shows that content is

encrypted, as watermarking will likely be added for premium content that is also encrypted and protected by a DRM

system.

Figure 2: Functional architecture.

To consume content, a device needs, at minimum, to have an authorization token (for getting a DRM license) and a

WM token that contains a WM pattern, a series of A or B decisions. The device is responsible for obtaining the required

data before requesting segments to the CDN.

5.3 System Configuration

Enabling or disabling the edge sequencing logic is set through the configuration to the edge. As an example, this can be

useful for a service of live sporting events where only premium events require watermarking enforcement. Other

moments of the day do not require it. In this case, content is still watermarked but the edge is only configured to

Device

Edge

Encoder/

Watermarker

Packager

Origin

A and B Variants

A and B Variants

A and B Variants

WMT

Generator
DRM Server

Authorization

Server

WM tokens ;

A or B Variant
WM token

Content keys &

DRM information

Authz token ;

License
Authz token

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 12

sequence during the limited period of time of the premium event. When sequencing is disabled, the edge shall consume

segments on the endpoint for Variant A. If this endpoint is not working properly, the origin shall deliver any available

Variant on this endpoint.

NOTE: When enabling watermarking, all devices that do not have a WM token will receive an error when

requesting content, hence they are then forced to request such token.

NOTE: As an example, enabling and disabling sequencing can be done with an API enable (true/false).

Watermarked objects names shall include a pattern that the CDN can match to differentiate these objects from non-

watermarked objects (initialization segments, subtitles, trickplay images). As an example, for a DASH manifest located

at https://edge.hostname/path/to/endpoint/index.mpd that references video segments as

<SegmentTemplate timescale="60000"

media="video_segment_$RepresentationID$_$Time$.mp4"

initialization="video_init_$RepresentationID$.mp4" startNumber="10967120"

presentationTimeOffset="903486496960">

the pattern for the differentiation of these objects from non-watermarked objects is video_segment_.

One of the following identification schemes, referred as variantId in this document, shall be used for the

identification of the Variants:

- A lower-case letter beginning with ‘a’. Variants are then ‘a’, ‘b’ and so on.

- A number beginning with 0. Variants are then 0, 1 and so on.

When addressing content, variantId shall be translated into variantPath as follows:

- variantPath = ${variantId} followed by ‘/’ or ‘.’

- As an exception, if ${variantId} is ‘a’ or ‘0’ then ${variantPath} may be empty

5.4 WM Token

A WM token provides a WM pattern which is unique (for example per streaming session or per user). This pattern

allows the sequencing of A/B Variants.

Two tokenisation schemes are defined in this document. The first, named direct, embeds the WM pattern in the token

and can be opened and interpreted by an edge irrespective of the underlying WM technology and provider. The second,

named indirect, requires integration of a WM technology provider's edge sequencing software at the edge.

The following are requirements on the WM token:

- The token shall be a CWT token, the basic structural requirements are defined in [6].

- The token shall be with integer keys in “deterministically encoded CBOR” as specified in [4] clause 4.2.

- Recipients shall process claims listed in [6] clause 3.1 when they are present. exp and iat shall be present.

- The token shall include either a WM pattern (direct mode) or data for deriving the WM pattern (indirect

mode). Absence of a wmpattern claim implies that the token is in indirect mode.

- Recipients shall support direct mode and may support indirect mode.

- The token shall be signed as described in clause 7 of [6]. Recipients shall support the HMAC 256/256 (kty

number 5) and ES256 (kty number -7) algorithms.

- The token shall be base64url-encoded as described in clause 5 of [7].

The following claims are defined and Table 1 provides the integer claim keys.

wmtoken = {

 wmver-label ^ => wmver-value,

 wmvnd-label ^ => wmvnd-value,

 wmpatlen-label ^ => wmpatlen-value,

 ? wmsegduration-label ^ => wmsegduration-value,

 wmtoken-direct // wmtoken-indirect,

 *wmext-label => any

}

wmver-value = uint .size 1

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 13

wmvnd-value = uint .size 1

wmpatlen-value = uint .size 2

wmsegduration-value = [(wmtimeticks : uint, wmtimescale : uint)]

wmext-label = int

; direct mode

wmtoken-direct = {

 wmpattern-label ^ => wmpattern-value

}

wmpattern-value = COSE_Encrypt0 // bytes

; indirect mode

wmtoken-indirect = {

 wmid-label ^ => wmid-value

 wmopid-label ^ => wmopid-value

 wmkeyver-label ^ => wmkeyver-value

}

wmid-value = text

wmopid-value = uint

wmkeyver-value = uint

Table 1: Integer Claim keys values for the WM token.

Claim label Integer key

(Temporary values)
wmver-label 300

wmvnd-label 301

wmpatlen-label 302

wmsegduration-label 303

wmpattern-label 304

wmid-label 305

wmopid-label 306

wmkeyver-label 307

wmver

The version of the WM Token. Recipients shall support this claim. This document describes version 1.

wmvnd

The WM technology vendor. Recipients shall support this claim. This provides the context for the key material

needed for signature verification. In the direct mode, it also provides the context for the key material needed

for decrypting wmpattern if needed. In the indirect mode, it identifies the vendor specific core to use. A list of

WM technology vendor identifiers is available at [10].

wmpatlen

The length in bits of the WM pattern. Recipients shall support this claim.

wmsegduration

The nominal duration of a segment. This claim is optional. Recipients may support this claim. When

WMPaceInfo data is not available, this may allow the edge to define the index to be considered in the WM

pattern. If WMPaceInfo is available, this claim shall be ignored. The array contains exactly 2 values. The first

value is a duration in time ticks where its base unit is defined by the second value. The second value is the

scale in number of time ticks per second. As an example, [60’000, 10’000] means that the segments are 60’000

ticks long while the scale is 10’000 ticks per second, wmsegduration is then equal to 6 seconds.

wmpattern

The WM pattern. Recipients shall support this claim in direct mode. It is recommended to encrypt the pattern.

Recipients shall support the A256GCM algorithm (kty number 3).

wmid

Used as input to derive the WM pattern for indirect mode. Recipients shall support this claim in indirect mode.

The derivation algorithm is not defined in this document and is vendor specific.

wmopid

Used as additional input to derive the WM pattern for indirect mode. Recipients shall support this claim in

indirect mode.

wmkeyver

The key to use for derivation of the WM pattern in indirect mode. Recipients shall support this claim in

indirect mode.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 14

The following example is an excerpt from a WM token for the direct mode. In this example, wmpattern is encrypted.

{

 /wmver/: 1,

 /wmvnd/: 14,

 /wmpatlen/: 124,

 /wmpattern/: "5hOdS05QcLFVSyjlZnF9mDGR1ipqw949MqYfanFIyMI="

}

The flow of the operations when retrieving the WM pattern for the above example is shown in Figure 3. Note also that

the claims listed below constitute the minimal set of claims necessary to produce a valid WM pattern when wmpattern

is encrypted.

Figure 3: Example of flow for retrieving the WM pattern in the direct case.

The following example is an excerpt from a WM token for the indirect case.

{

 /wmver/: 1,

 /wmvnd/: 14,

 /wmpatlen/: 2048,

 /wmid/: "33a388f5-2109-456f-bf2b-c6780b75c918",

 /wmopid/: 40,

 /wmkeyver/: 3

}

The flow of the operations when deriving the WM pattern from the provided parameters for the above example is

shown in Figure 4. Note that there is a vendor specific core (identified by wmvnd). It is recommended that, performance-

wise and software-stack-wise, it is comparable with the direct case. In other words, the vendors specific core should be

based on the crypto operations which are used in the direct mode, and its performance should be equivalent. For

example, the direct mode relies on one decryption operation when wmpattern is encrypted, the vendor specific core

should be consisting of the similar operations to preserve the quantity of operations comparable between these two

modes.

Figure 4: Example of flow for retrieving the WM pattern in the indirect case.

5.5 WMPaceInfo

5.5.1 Introduction

When a device requests a segment, the edge sequencing logic needs to know which bit in the unique WM pattern to

consider for retrieving either A or B Variant of the requested segment before delivering it to the device. WMPaceInfo

contains this mapping in addition to some data needed for content preparation. It is transmitted from the encoder (that is

combined with the watermarking pre-processor) to the following servers that may need it (packager, origin, or edge).

COSE

decrypt
WM pattern wmpattern

wmpatlen

key

WM pattern wmid

wmvnd

wmkeyver

vendor

specific

core

wmopid

stored

keys

select

select

wmpatlen

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 15

5.5.2 WMPaceInfo Data

WMPaceInfo is as shown in Table 2.

Table 2: WMPaceInfo data.

Attribute Producer Consumers Purpose
variant Encoder Edge Integration, debugging
position Encoder Edge Bit position in the WM pattern
firstpart Encoder Packager, Origin Egress packaging
lastpart Encoder Packager, Origin Egress packaging

Where

- variant gives the Variant identification, 0, 1 and so on. This information can be useful up to the edge for

verifying that the right Variant has been obtained.

- position is the index in the WM pattern to consider for this segment. Positions are zero-based. When it is

equal to -1, the corresponding segment is not watermarked. For example, position=33 indicates that this

segment refers to position 34 of the WM pattern.

- firstpart informs whether this segment is the first one with this position value. It is equal to true if this is

the case, otherwise it is equal to false. See clause 5.6.2 for further details.

- lastpart informs whether this segment is the last one with this position value. It is equal to true if this is

the case, otherwise it is equal to false. See clause 5.6.2 for further details.

5.5.3 Conveying WMPaceInfo

5.5.3.1 Introduction

WMPaceInfo is delivered from the encoder to other servers. There is no unique mechanism for this. This document

does not recommend one preferred option applicable for all protocols, Table 3 only present some possible options for

conveying WMPaceInfo with a preferred option for some protocols (in bold in the table). The following goes through

these different options.

Table 3: Possible options for conveying WMPaceInfo information.

Ingest protocol WMPaceInfo delivery options

RTMP SEI

RTP/UDP/RIST/SRT SEI, TS adaptation field

HLS/TS over HTTP POST HTTP header, SEI

CMAF-based protocols/formats (HLS/fMP4, DASH) over HTTP POST HTTP header, ISOBMFF box, SEI

File access protocol ISOBMFF box, SEI, sidecar file

5.5.3.2 Sidecar File

When segments (discrete files or byteranges) are delivered with a file transfer protocol, it may be convenient to have

WMPaceInfo data in a sidecar file. For efficiency, the WMPaceInfo data is not copied directly as some would be

included multiple times.

The sidecar file is of the following format (using CDDL representation [5]) and shall be encoded using deterministically

encoded CBOR as specified in [4] clause 4.2 with integer keys.

;---------------------------------------+

; Maps Integer Keys (Temporary values)

version = 1

segments = 2

fileSize = 3

startRange = 4

segmentRegex = 5

position = 6

firstpart = 7

lastpart = 8

;---------------------------------------+

discrete-segment = {

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 16

 ?segmentRegex : text,

 position : int .size 2 .ge -1,

 ?firstpart : bool,

 ?lastpart : bool

}

byterange-segment = {

 startRange : uint .size 8,

 position : int .size 2 .ge -1

}

sidecar-discrete = {

 version : uint .size 1,

 segments : [+ discrete-segment]

}

sidecar-byterange = {

 version : uint .size 1,

 fileSize : uint .size 8,

 segments : [+ byterange-segment]

}

sidecar = (sidecar-byterange // sidecar-discrete)

When segments are discrete files:

- sidecar shall contain only sidecar-discrete elements.

- version is set to 1 for sidecar files compliant to this document.

- segmentRegex is a POSIX extended regular expression as described in clause 9 of [9]. It allows to define the

filename of the segments for which the data applies. segmentRegex is optional.

- position, firstpart and lastpart are defined in clause 0. firstpart and lastpart are optional.

NOTE: Using regular expressions and file naming conventions allows reducing the number of required side car

files. The same side car file could be used for all renditions for example. This allows the origin to reduce

the number of sidecar files, but the edge will always receive several copies of the same data as caching is

done on the exact filename. It is recommended to balance the advantages and disadvantages of regular

expressions, because of its CPU load on the origin.

The following is an example for a set of segments where the filenames satisfy the segmentRegex expression. In this

example, the filenames are in the form of video_segment_[repID]_123.mp4,

video_segment_[repID]_124.mp4 and so on, allowing to have one sidecar file for all Representations (for DASH).

sidecar (

 /version/ 1,

 /segments/ [{/segmentRegex/ "video_segment_ .*?_123.mp4", /position/ 21},

 {/segmentRegex/ "video_segment_ .*?_124.mp4", /position/ 22}]

)

When segments are byteranges:

- sidecar shall contain only sidecar-byterange elements.

- version is set to 1 for sidecar files compliant to this document.

- fileSize is the size of the track in bytes.

- startRange defines the position of the first byte in the byterange. This expressed as a byte offset from the

beginning of the track sidecar-byterange elements in the array shall be ordered in increasing

startRange values.

- position is defined in clause 0.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 17

NOTE: The first byterange of a track contains the initialisation segment. When segments are delivered with

byteranges, it is not possible to differentiate the request for this part of the file from a request for a media

segment when using a pattern as described in clause 5.3.5. The initialisation segment is not watermarked,

therefore position equal -1 for this segment.

The following is an example of a file with an initialisation segment part of the byterange from 0 to 1117 and two

segments.

Sidecar (

 /version/ 1,

 /fileSize/ 262445216,

 /segments/ [{/startRange/ 0, /position/ -1},

 {/startRange/ 1118, /position/ 0},

 {/startRange/ 1701212, /position/ 1},

 …

 {/startRange/ 261083393, /position/ 118},

 {/startRange/ 262073936, /position/ 119}]

)

5.5.3.3 HTTP Header

When content is pushed, in the request header, under the WMPaceInfoIngest HTTP header field, the following JSON

object is added:

WMPaceInfoIngest : {

 "version": version,

 "variant": variant,

 "position": position,

 "firstpart": firstpart,

 "lastpart": lastpart

}

Where

version is set to 1 for WMPaceInfoIngest compliant to this document.

variant, position, firstpart and lastpart are defined in clause 5.5.2.

When content is pulled, in the response header, under the WMPaceInfoEgress HTTP header field, the following

CBOR object, base64url-encoded as described in clause 5 of [7], is added:

WMPaceInfoEgress : <sidecar-discrete>

Where

- sidecar-discrete is defined in clause 5.5.3.2 and contains exactly one discrete-segment object with

data for that segment.

Below is an example of the JSON element added in a WMPaceInfoIngest header field where the payload of the HTTP

request contains the full segment of Variant A.

{

 "version": 1,

 "variant": 0,

 "position": 33,

 "firstpart": true,

 "lastpart": true

}

5.5.3.4 ISOBMFF Box

The format of WMPaceInfo class shall be

class WMPaceInfo {

 unsigned int(8) version;

 unsigned int(8) variant;

 unsigned int(1) emulation_1;

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 18

 unsigned int(15) position;

 unsigned int(1) emulation_2;

 unsigned int(1) firstpart;

 unsigned int(1) lastpart;

 unsigned int(5) reserved;

}

Where

- version is set to 1 for WMPaceInfo compliant to this document.

- variant, position, firstpart and lastpart are defined in clause 0.

- emulation_1, and emulation_2 are set to 1.

Within an ISOMBFF file, the WMPaceInfo class shall be carried in the following box:

Box Type: ‘wmpi’

Container: Top level box

Mandatory: No

Quantity: Zero or one
aligned(8) class WMPaceInfoBox extends Box(‘wmpi’)

{

 WMPaceInfo();

}

This box should be inserted only at the beginning of a segment, after the styp box and before the moof box, in order to

facilitate content manipulation when padding it (see clause 5.7.5.10).

5.5.3.5 SEI Message

SEI messages are inserted in the stream with a specific syntax depending on the codec. [8] provides the syntax for

AVC, HEVC and AV1 video codecs in Annex B. In these messages:

- The UUID shall be equal to 0xbec4f824-170d-47cf-a826-ce008083e355

- The watermarking metadata is the WMPaceInfo data with the format defined for the class WMPaceInfo()

in clause 5.5.3.4.

This message should be inserted for the first frame of a segment to facilitate content manipulation when padding it (see

clause 5.7.5.1).

5.5.3.6 TS Adaptation Field

Following clause U of [2], the format of the private adaptation field descriptor carrying the WMPaceInfo data is defined

in Table 4

Table 4: WMPaceInfo descriptor.

Syntax No. of bits Mnemonic

temi_WMPaceInfo_descriptor {

 af_descr_tag

 af_descr_length

 WMPaceInfo()

}

8

8

40

uimsbf

uimsbf

uimsbf

Where

- af_descr_tag is an 8-bit field that identifies this AF descriptor. It is equal to 0xDF.

- af_descr_length is an 8-bit field specifying the number of bytes of the AF descriptor immediately

following af_descr_length field.

- WMPaceInfo() is a 40-bit field that carries the information defined for the class WMPaceInfo() in clause

5.5.3.4.

This message should be inserted for the first frame of a segment to facilitate content manipulation when padding it (see

clause 5.7.5.1).

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 19

5.6 Content Preparation

5.6.1 Introduction

Content preparation means the generation of A/B Variants of the segments followed by the push of content on the

origin. It is under a workflow manager responsibility in case of VOD and fully automated for Live content. The encoder

generates the different Variants of the adaptive content. The encrypted segments, the DASH manifest and HLS playlists

are generated by the packager and pushed to the origin. A simplified flow is shown in Figure 5 for the case of Live

content if the DASH-IF ingest protocol is used [i.1] (note that content protection steps are omitted for clarity). For

encrypted content, Variants of every segment part of the same Representation may be encrypted using the same

encryption method and with the same content key, meaning the same DRM license allows decrypting the A and B

Variants. In addition to the Variants, the encoder also pushes WMPaceInfo that contain information allowing the

packager and the origin to properly associate the pieces of Variants that are pushed to a bit position on the WM pattern.

In such flow, the packager can aggregate multiple ingest segments into one egress segment, with the limitation that only

ingest segments carrying the same position value can be aggregated together.

Figure 5: Example of Live DASH content preparation workflow using the DASH-IF ingest protocol.

5.6.2 Encoding Recommendations

This clause contains recommendation when encoding content. The goal is to facilitate the creation and management of

A and B Variants in the delivery chain.

When segments are requested as byteranges in a file or when chunks are requested as byteranges in a segment, the

segments and chunks in A and B Variants shall have the same size as the player receives only one DASH manifest or

HLS playlist and will get byterange lengths from one sidx box only. How this is achieved in out of the scope of this

document (as an example, bit stuffing in the encoder is an option).

NOTE: This solution does not allow creating aligned segment when content is delivered with HLS in the form of

MPEG-2 TS segments encrypted with AES sample encryption, because start code emulation prevention

must be re-applied over the entire NAL unit after encryption with MPEG-2 TS.

NOTE: An alternative solution is either to not use segments requested as byteranges, but to use discrete files (in

these cases, there is no need to align Variant A and B of the same segment) or use CMAF segments with

HLS where start code emulation prevention is not re-applied after encryption.

5.6.3 Delivering Content and WMPaceInfo from the Encoder to the
Packager

Only one option for conveying WMPaceInfo information from the encoder to the origin shall be used. Multiple

concurrent formats are not allowed.

NOTE: When WMPaceInfo is delivered in TS adaptation field, ISOBMFF box, or SEI, it adds overhead in the

delivery from the CDN to devices. The sidecar file and HTTP header delivery methods do not.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 20

The encoder is sending part of segments to the packager, as the output of the encoder is not necessarily aligned on the

segment length. Furthermore, when multiple streaming formats are used, it may happen that segments generated by the

packager are not of the same size for every streaming protocol (for example, 2 seconds segments for DASH and 4

seconds segments for HLS). The encoder then needs a mechanism for announcing which parts of the Variants it sends

can be aggregated in segments. This is achieved by using the firstpart and lastpart within WMPaceInfo.

NOTE: Where an encoder delivers additional metadata to instruct the packager how to aggregate the content into

segments, the encoder must ensure that metadata and firstpart and lastpart fields are consistent.

For example, the encoder could output the series of content elements of 1 second length with WMPaceInfo as shown in

Figure 6.

Figure 6: Example of output of an encoder.

If the encoder pushes over HTTP these elements, each one should carry a WMPaceInfoIngest HTTP header with the

relevant data. Every server keeps the information within the header associated to the ingested segment. In some cases,

for example when the origin does additional packaging, the header may be updated. The packager can then prepare

segments according to the streaming protocol. From the example above, it can create segments of 2 or 4 seconds

keeping the consistency of the watermarking.

NOTE: In this case, 2 consecutive segments of 2 seconds carry the same position value, hence a larger piece of

content is required to retrieve an identifier compared to the case where 2 consecutives segments carrying

different position values.

Other options are to carry WMPaceInfo in a sidecar file or SEI or ISOBMFF box or TS adaptation field. For cases

where the origin can perform additional manipulation of the content, WMPaceInfo may be carried within the content

instead providing it is overwritten as specified in 0.

5.6.4 Segment Ingress Path Structure on the Origin

5.6.4.1 Introduction

The DASH manifest [1] and HLS playlist [3] served to the devices are “neutral”, meaning that

- The same playlist or manifest is served to all devices of all end-users.

- It does not expose different names for A and B Variants of a given segment.

Where the combination of packager and origin is able to perform additional re-packaging (e.g., interface 1 of [i.1]), the

structure of ingest and egress may differ.

Where the combination of packager and origin does not perform additional re-packaging (e.g., interface 2 of [i.1]), the

structure of ingest and egress may be the same.

Nevertheless, the segments served to the devices need to be either an A or a B Variant, depending on the WM token

information. Therefore, the media segments path at the CDN edge and at the origin can be different.

5.6.4.2 Locating the Variants

Egress DASH manifests and HLS playlists shall be neutral, but ingest DASH manifests and HLS playlists include

information about the A and B Variants being ingested, this is

- The ingest path

- Some signalling elements to describe if a DASH Adaptation Set includes the A or B Variants, or if an HLS

media playlist includes A or B Variants.

The ingest of A and B Variants shall use specific ingest paths that include a Variant identification (${variantId}).

DASH Ingest manifests shall include an AdaptationSet per Variant. The contents of the AdaptationSet shall be

identical for every Variant apart from an EssentialProperty element that indicates the variantId and that the

1 second

firstpart:0

lastpart:1

position:2

firstpart:1

lastpart:0

position:3

firstpart:0

lastpart:0

position:3

firstpart:0

lastpart:0

position:3

firstpart:0

lastpart:1

position:3

firstpart:1

lastpart:0

position:4

firstpart:0

lastpart:0

position:4

4 seconds

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 21

Variants are grouped (i.e., they reference the same media). It has the @schemeIdUri attribute equal to

http://dashif.org/guidelines/watermarking_variant#${variantId} where ${variantId} identifies

the Variant with which this EssentialProperty element is associated and @value attribute identifies the group to

which the Variant belongs. If there are additional Variants (A, B and C for example), the @schemeIdUri attribute is

different for each Variant, for example, for Variant C, @schemeIdUri attribute shall be equal to

http://dashif.org/guidelines/watermarking_variant#c, if the schema with lower case letters is used.

The following is an example of a DASH ingest manifest with two Variants, A and B. The watermarking signalling is

highlighted in bold. EssentialProperty elements indicate that Variant A and Variant B belong to the same group

("tv1"). In this example, lower case letters are used for variantId.

NOTE: Segment file naming with template based on segment $number or $time are possible.

<AdaptationSet mimeType="video/mp4" segmentAlignment="true" startWithSAP="1"

subsegmentAlignment="true" subsegmentStartsWithSAP="1"

bitstreamSwitching="true">

 <EssentialProperty

schemeIdUri="http://dashif.org/guidelines/watermarking_variant#a"

value="tv1"/>

 <SegmentTemplate timescale="60000"

media="a/video_segment_$RepresentationID$_$Time$.mp4"

initialization="a/video_init_$RepresentationID$.mp4" startNumber="10967120"

presentationTimeOffset="903486496960">

 <SegmentTimeline>

 <S t="903487696960" d="240000"/>

 <S t="903487936960" d="186000"/>

 </SegmentTimeline>

 </SegmentTemplate>

 <Representation id="27" width="1920" height="1080" frameRate="30/1"

bandwidth="5000000" codecs="avc1.4D4028"/>

 <Representation id="24" width="1280" height="720" frameRate="30/1"

bandwidth="3000000" codecs="avc1.4D401F"/>

 <Representation id="26" width="640" height="360" frameRate="30/1"

bandwidth="1499968" codecs="avc1.4D401E"/>

</AdaptationSet>

<AdaptationSet mimeType="video/mp4" segmentAlignment="true" startWithSAP="1"

subsegmentAlignment="true" subsegmentStartsWithSAP="1"

bitstreamSwitching="true">

 <EssentialProperty

schemeIdUri="http://dashif.org/guidelines/watermarking_variant#b"

value="tv1"/>

 <SegmentTemplate timescale="60000"

media="b/video_segment_$RepresentationID$_$Time$.mp4"

initialization="b/video_init_$RepresentationID$.mp4" startNumber="10967120"

presentationTimeOffset="903486496960">

 <SegmentTimeline>

 <S t="903487696960" d="240000"/>

 <S t="903487936960" d="186000"/>

 </SegmentTimeline>

 </SegmentTemplate>

 <Representation id="27" width="1920" height="1080" frameRate="30/1"

bandwidth="5000000" codecs="avc1.4D4028"/>

 <Representation id="24" width="1280" height="720" frameRate="30/1"

bandwidth="3000000" codecs="avc1.4D401F"/>

 <Representation id="26" width="640" height="360" frameRate="30/1"

bandwidth="1499968" codecs="avc1.4D401E"/>

</AdaptationSet>

For HLS ingest playlists, the master playlist shall include all the A and B Variants with a custom attribute specifying the

Variant (using ${variantId} identification as defined in clause 5.30). The attribute is WATERMARKING-VARIANT. A

combination of both audio and video watermarking can therefore be used in a single streamset. In the media playlists,

the only specific signalling is the segments paths that reflects on which ingest path the Variants are ingested. The sub-

paths in the media playlists shall use the same convention that the ${variantId}.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 22

The following is an example of HLS ingest playlists, the watermarking signalling is highlighted in bold (this theoretical

example, both the video and audio are watermarked). In this example, lower case letters are used for variantId.

Master playlist

#EXTM3U

#EXT-X-VERSION:4

#EXT-X-INDEPENDENT-SEGMENTS

#EXT-X-STREAM-INF:BANDWIDTH=5227200,AVERAGE-

BANDWIDTH=3511200,CODECS="avc1.4d401f,mp4a.40.2",RESOLUTION=1280x720,FRAME-

RATE=30.000,AUDIO="program_audio",WATERMARKING-VARIANT="a"

video_1.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=2719200,AVERAGE-

BANDWIDTH=1861200,CODECS="avc1.77.30,mp4a.40.2",RESOLUTION=640x360,FRAME-

RATE=30.000,AUDIO="program_audio",WATERMARKING-VARIANT="a"

video_2.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=8571200,AVERAGE-

BANDWIDTH=5711200,CODECS="avc1.4d4028,mp4a.40.2",RESOLUTION=1920x1080,FRAME-

RATE=30.000,AUDIO="program_audio",WATERMARKING-VARIANT="a"

video_3.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=5227200,AVERAGE-

BANDWIDTH=3511200,CODECS="avc1.4d401f,mp4a.40.2",RESOLUTION=1280x720,FRAME-

RATE=30.000,AUDIO="program_audio",WATERMARKING-VARIANT="b"

video_4.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=2719200,AVERAGE-

BANDWIDTH=1861200,CODECS="avc1.77.30,mp4a.40.2",RESOLUTION=640x360,FRAME-

RATE=30.000,AUDIO="program_audio",WATERMARKING-VARIANT="b"

video_5.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=8571200,AVERAGE-

BANDWIDTH=5711200,CODECS="avc1.4d4028,mp4a.40.2",RESOLUTION=1920x1080,FRAME-

RATE=30.000,AUDIO="program_audio",WATERMARKING-VARIANT="b"

video_6.m3u8

#EXT-X-IMAGE-STREAM-INF:BANDWIDTH=55649,AVERAGE-

BANDWIDTH=23579,RESOLUTION=308x174,CODECS="jpeg",URI="trickplay_7.m3u8"

#EXT-X-MEDIA:TYPE=AUDIO,LANGUAGE="eng",NAME="Stadium

ambiance",AUTOSELECT=YES,DEFAULT=YES,GROUP-

ID="program_audio",URI="audio_8.m3u8",WATERMARKING-VARIANT="a"

#EXT-X-MEDIA:TYPE=AUDIO,LANGUAGE="eng",NAME="Stadium

ambiance",AUTOSELECT=YES,DEFAULT=YES,GROUP-

ID="program_audio",URI="audio_9.m3u8",WATERMARKING-VARIANT="b"

NOTE: While it is a legal signaling in HLS to have multiple EXT-X-MEDIA tags with the same GROUP_ID value,

each tag shall have a different NAME value. As these playlists are not for devices to consume and to

minimize the processing on the playlists, the ingest playlists do not follow this rule and multiple EXT-X-

MEDIA share the same NAME value.

Media playlist (A Variant)

#EXTM3U

#EXT-X-VERSION:6

#EXT-X-INDEPENDENT-SEGMENTS

#EXT-X-TARGETDURATION:6

#EXT-X-MEDIA-SEQUENCE:11352692

#EXT-X-MAP:URI="video_init_1.mp4"

#EXT-X-PROGRAM-DATE-TIME:2021-09-15T00:48:38.933Z

#EXTINF:6.000,

a/video_segment_1_11352692.mp4

#EXTINF:6.000,

a/video_segment_1_11352693.mp4

#EXTINF:6.000,

a/video_segment_1_11352694.mp4

#EXTINF:6.000,

a/video_segment_1_11352695.mp4

#EXTINF:6.000,

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 23

a/video_segment_1_11352696.mp4

Media playlist (B Variant)

#EXTM3U

#EXT-X-VERSION:6

#EXT-X-INDEPENDENT-SEGMENTS

#EXT-X-TARGETDURATION:6

#EXT-X-MEDIA-SEQUENCE:11352692

#EXT-X-MAP:URI="video_init_1.mp4"

#EXT-X-PROGRAM-DATE-TIME:2021-09-15T00:48:38.933Z

#EXTINF:6.000,

b/video_segment_1_11352692.mp4

#EXTINF:6.000,

b/video_segment_1_11352693.mp4

#EXTINF:6.000,

b/video_segment_1_11352694.mp4

#EXTINF:6.000,

b/video_segment_1_11352695.mp4

#EXTINF:6.000,

b/video_segment_1_11352696.mp4

When the ingested content is not watermarked anymore, then

- For DASH content, the EssentialProperty elements shall be removed from the ingest manifest and a new

Period shall be created with a single AdaptationSet. The path to the segments shall be updated, removing

any information on the Variant location (in the example above, the a/ shall be removed from the @media

value of the SegmentTemplate element).

- For HLS content, the encoder shall create a new master playlist that does not include WATERMARKING-

VARIANT attributes. It also stops delivering the additional media playlists for the B Variant and others if

present. The path to the segments in the media playlist delivered to devices shall be updated, removing any

information on the Variant location (in the example above, the a/ shall be removed from the media playlist).

NOTE: Stopping watermarking content is different from toggling edge sequencing logic (see clause 5.3).

5.6.4.3 Locating the Sidecar File

The sidecar file is part of the ingest with the DASH manifest or HLS playlist, the link to this file is added in different

places depending on the format.

DASH ingest manifests shall include an EssentialProperty element at the Representation level with a

@schemeIdUri attribute equal to http://dashif.org/guidelines/watermarking_wmpaceinfo and @value

attribute equal to the pointer to the sidecar file. The pointer is relative to the ingest manifest.

The following is an example of a DASH ingest manifest where the watermarking signalling is highlighted in bold. In

this example, the absolute path for the sidecar file for the first representation is equal to

https://dash.edgesuite.net/dash264/TestCases/1a/ElephantsDream_H264BPL30_0100.264.dash_wm_pace_info.

NOTE: This example also includes the signalling defined in clause 0 (for one Variant A). In this case, the

EssentialProperty elements are added in the Representation.

<?xml version="1.0" encoding="UTF-8"?>

<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="urn:mpeg:dash:schema:mpd:2011"

 xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"

 type="static"

 mediaPresentationDuration="PT654S"

 minBufferTime="PT4S"

 …

 <AdaptationSet mimeType="video/mp4" codecs="avc1.42401E"

subsegmentAlignment="true" subsegmentStartsWithSAP="1" contentType='video'

maxWidth="480" maxHeight="360" maxFrameRate="24" par="4:3">

 <Representation id="2" bandwidth="150000" width="480" height="360"

frameRate="24">

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 24

 <EssentialProperty

schemeIdUri="http://dashif.org/guidelines/watermarking_variant#a"

value="tv1"/>

 <EssentialProperty

schemeIdUri="http://dashif.org/guidelines/watermarking_wmpaceinfo"

value="ElephantsDream_H264BPL30_0100.264.dash_wm_pace_info"/>

 <BaseURL>a/ElephantsDream_H264BPL30_0100.264.dash</BaseURL>

 <SegmentBase indexRange="984-11244">

 <Initialization range="0-983"/>

 </SegmentBase>

 </Representation>

 <Representation id="3" bandwidth="250000" width="480" height="360"

frameRate="24">

 <EssentialProperty

schemeIdUri="http://dashif.org/guidelines/watermarking_variant#a"

value="tv1"/>

 <EssentialProperty

schemeIdUri="https://dashif.org/guidelines/watermarking_wmpaceinfo"

value="ElephantsDream_H264BPL30_0175.264.dash_wm_pace_info"/>

 <BaseURL>a/ElephantsDream_H264BPL30_0175.264.dash</BaseURL>

 <SegmentBase indexRange="984-11245">

 <Initialization range="0-983"/>

 </SegmentBase>

 </Representation>

 …

 </AdaptationSet>

</MPD>

HLS ingest playlists shall include in the media playlist a custom tag specifying the pointer to the sidecar file. The

pointer is relative to the ingest manifest. The tag is #EXT-X-WMPACEINFO:<attribute-list> where the defined

attribute is URI, a quoted-string that gives the relative pointer to the sidecar file. In the media playlist for each Variant

(A, B, C …), the sidecar file referenced by the #EXT-X-WMPACEINFO tag is the same as the variant value shall not be

considered.

The following is an example of a HLS media playlist, the watermarking signalling is highlighted in bold. Note that the

master playlist remains unmodified.

#EXTM3U

#EXT-X-TARGETDURATION:8

#EXT-X-VERSION:7

#EXT-X-MEDIA-SEQUENCE:1

#EXT-X-PLAYLIST-TYPE:VOD

#EXT-X-INDEPENDENT-SEGMENTS

#EXT-X-WMPACEINFO:URI="main_wm_pace_info"

#EXT-X-MAP:URI="main.mp4",BYTERANGE="1118@0"

#EXTINF:7.98333,

#EXT-X-BYTERANGE:1700094@1118

a/main.mp4

#EXTINF:8.00000,

#EXT-X-BYTERANGE:1789481@1701212

a/main.mp4

#EXTINF:8.00000,

#EXT-X-BYTERANGE:1777588@3490693

a/main.mp4

#EXTINF:8.00000,

#EXT-X-BYTERANGE:1752144@5268281

a/main.mp4

#EXTINF:7.26667,

#EXT-X-BYTERANGE:1563219@7020425

a/main.mp4

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 25

5.6.5 Packaging Recommendations

This clause contains requirements where packaged content is served to devices. The goal is to facilitate the creation and

management of A and B Variants in the delivery chain. These requirements apply even if no re-packaging process

exists.

NOTE: This implies that an encoder working against a completely passive receiver (e.g. interface 2 of [i.1]) must

publish egress versions of the content directly.

The minimum segment duration should consider the embedding capabilities of the WM technology in order to ensure

that a segment contains only information for A or B Variant. A segment carrying only one bit of information (Variant A

or B) allows to match a segment to a bit value in the WM pattern.

As described in 0, a re-packaging process may aggregate received parts of content. It builds a segment beginning with

the part of content with firstpart=true and then aggregates until lastpart for creating a segment until the targeted

length has been reached. It shall begin creating a new segment if a part of content with firstpart=true is received

before reaching the targeted length. The packager shall not aggregate segments that have inconsistent metadata, more

precisely, only ingest segments carrying the same position value shall be aggregated together.

The transformation of ingest manifest into egress manifests requires the following actions:

- All watermarking_wmpaceinfo and watermarking_variant EssentialProperty elements in DASH

manifests and EXT-X-WMPACEINFO tags in HLS playlists shall be removed from the egress manifests.

- A and B HLS media playlists of a given rendition in HLS shall be merged into a single, neutral version of it

(without ${variantPath}).

- DASH manifests shall be made neutral (without ${variantPath}).

Additionally, when translating from ingress to egress, a re-packaging process shall:

- overwrite WMPaceInfo when carried as SEI messages, TS adaptation fields or ISOBMFF boxes. Overwriting

shall prevent start code emulation. It is recommended to overwrite with 0xFF.

- remove firstpart, lastpart, segmentRegex from sidecar-discrete elements.

5.7 Content Playback

5.7.1 Introduction

The flow for content playback is shown in the following clauses. The origin received content as explained in clause 5.5.

It has access to the A/B Variants and the WMPaceInfo data.

This clause describes only the case where the WM token is used in direct mode and does not consider the value of

wmsegduration (hence using WMPaceInfo).

This clause is also not considering the case of download of content for later offline playback. Usually, content available

for download is available in the form of byteranges and the device requests large byteranges that overlap those

announced in the MPD or HLS playlists. When content is watermarked, this is not possible as only announced

byteranges are addressable (see clause 0). The device shall therefore either use the announced byteranges only or a

proxy shall ensure that the edge receives requests that are for announced byteranges.

Content playback is divided in three actions:

- Acquiring the WM token, the DASH manifest, or the HLS playlists

- Acquiring the initialisation segment

- Acquiring media segments

While the first action is common to all type of content, the other ones have variations depending on the packaging and

delivery mode of the content. Variation is, for example on the difference between content delivered as byterange or

discrete segments. Another possible variation appears when HLS low latency is used for the chunks requested at the

edge of live.

The following goes through the different actions by providing the expected workflows.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 26

5.7.2 Dynamic Ad Insertion

In case of Dynamic Ad Insertion (DAI), the break may happen at any time. As every segment carries watermarking

information allowing to perform the detection, there shall not be segments carrying conflicting data. While some

techniques may recover from this mix of data, it will, in all cases, impact the length of content needed for retrieving the

unique identifier.

For Live content, assuming that an ad replacement period is defined, then from the device perspective, the following

consumption modes are possible.

- The device consumes ads from an alternative edge for the full duration of the ad break

- The device consumes ads from an alternative edge for a duration shorter than the replacement period

- The device consumes the original content as no replacement ad is proposed

Devices may therefore consume content differently during the ad break.

For VOD content, ads will be inserted or stitched with ad break (cue in/out points for example) markers. The device

should consume them from an alternative edge for the full duration of the ad break.

The encoder shall watermark ads part of the original content for Live content. The watermarking technology shall

remain consistent between all these options. Some devices may receive the original content if no ad can be found for

replacement. One consequence is that these devices receive content that is meant to be watermarked following the rules

of this document.

Devices receiving an ad for replacement shall receive it from a different edge that does not enforce watermarking. Such

edge will then gracefully ignore the WM token.

The WM token is expected to be present in all playback requests during the session. In presence of a DAI manifest

manipulator, depending on its behaviour, it may be necessary to tweak the configuration of the delivery pipeline to

guarantee the propagation of the WM token. For instance, it may be required to perform some manifest manipulation at

the edge to re-introduce the WM token in the response, e.g., when the token is transported as a query parameter and the

DAI manifest manipulator is not piggybacking incoming query parameters in the rewritten manifest/playlist. Another

case is when the watermark token is incorporated to the virtual path, stripped at the edge on its way to the DAI manifest

manipulator (that remains therefore unaware of the WM token) which returns a manipulated playlist that contains

absolute URLs.

5.7.3 WM Token, DASH Manifest and HLS Playlists Acquisition

The device acquires the WM token in an implementation specific manner. It may be retrieved directly from a WM

token server, or it may be provided in a response from another server as part of other data required for playing back

content.

The WM token may be added as part of the virtual path of the requested object, as a query string attribute or as part of

the HTTP header when the device requests content to the edge. It is recommended to use the virtual path.

The WM token may be added by the device for requesting DASH manifest and HLS playlists. While these objects are

not watermarked (the pattern in the name allows the edge to know this), the edge may validate or not the token and

refuse to serve these objects if the token is not valid. The edge may also gracefully ignore the token. The origin cleans

the served objects, removing any property related to location of objects (see clause 5.6.5). The manifest and playlist are

neutral. This is summarized in Figure 7.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 27

Figure 7: Token, DASH manifest and HLS playlist acquisition.

5.7.4 Initialisation Segment Acquisition

When content is delivered as byteranges, as the initialisation segment is within the file, the token shall be added in the

request as the requested file has a name that matches the pattern for watermarked content. The edge will then apply the

exact same logic it applies for a media segment, it retrieves the sidecar file and extracts the WMPaceInfo for the first

part of the track that contains the initialisation segment (as defined in clause 5.7.5). It can then deliver the initialisation

segment to the device. As position is equal to -1 (not watermarked), it shall deliver the initialisation segment from

Variant A. One or several Variants may become unavailable on the origin for any reason, such as a lost connection with

the encoder for these encoding pipelines. Such situation will result in a failed playback if Variant A is the one that is not

available. The origin shall deliver to the edge the initialisation segment from any available Variant in this case on the

endpoint for Variant A.

NOTE: The token is evaluated and validated as the edge cannot make a difference between the initialisation

segment and a media segment.

When content is delivered as discrete segments, the name of the initialisation segment shall not match the pattern for

watermarked content as written in clause 5.3. The WM token may be added by the device for requesting the

initialisation segment. The edge may validate it or not and may refuse to serve these objects if it is not valid. The edge

may also gracefully ignore it.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 28

5.7.5 Media Segments and WMPaceInfo Acquisition

5.7.5.1 General Requirements

For the media segments, a token shall be attached to the HTTP requests. If not present, the edge shall reject the request

and shall not deliver the segment. The edge shall validate the WM token (that can include checking signed data or

decrypting some claims) which is attached to the requests and extracts the WM pattern so that the correct Variant can be

sequenced.

Watermarked objects shall include in the sub-path in the edge forward requests to the origin the value of identifying

Variants that is part of the configuration described in clause 0. A request received at the CDN edge for

https://edge.hostname/path/to/endpoint/video_segment_5_8353305.mp4 shall be translated into a forward request for

https://origin.hostname/path/to/endpoint/${variantPath}video_segment_5_8353305.mp4 where the value of

${variantPath} depends on the value extracted from the WM pattern for this segment. The same logic applies if the

watermarking is done through audio segments.

The connection between the origin and the edge shall be restricted to legitimate requests. How this is achieved is out of

the scope of this document.

NOTE: A static secret (a shared key), dynamic signatures or access lists (based on IP addresses) are examples of

tools for restricting the access.

There may be the need to disable watermarking within or upstream of the packager at any time, for example, one or

several Variants may become unavailable on the origin for any reason, such as a lost connection with the encoder for

these encoding pipelines. As devices request all Variants, this situation will result in intermittent black screens when

requesting the affected Variants. In such case, position shall be set to -1 in WMPaceInfo, effectively announcing to

the edge sequencing logic that segments are not watermarked. The edge shall then consume segment on the endpoint for

Variant A. If this endpoint is not working properly, the origin shall deliver any available Variant on this endpoint.

NOTE: This is breaking the watermarking detection. The period when such contingency measure is applied is not

to be used for detection. How the end-to-end system is synchronized is out of the scope of this document.

As an example, the origin can raise an alarm.

5.7.5.2 WMPaceInfo Acquisition

For each device request for /pathname/filename, the edge shall retrieve from the origin egress WMPaceInfo data

associated to this object. The origin presents this information differently whether segments are discrete or byteranges:

- For byterange segment, the origin shall have a dedicated endpoint for delivering WMPaceInfo information as a

sidecar file. For a segment requested by a device at /pathname/filename, the origin shall have an endpoint

/pathname/WMPaceInfo/filename that makes the sidecar file available. The response payload shall

contain the sidecar file (as defined in clause 0 for byterange segments). The origin shall not extract data and

only provide the sidecar file to the edge. The Content-Type for this object is application/cbor.

- For discrete segment, the origin

- Shall have a dedicated endpoint /pathname/WMPaceInfo/filename for delivering WMPaceInfo for

the requested segment. The response payload shall contain a sidecar file that contain a single

WMPaceInfo object. The Content-Type for this object is application/cbor.

- Shall add WMPaceInfo in the response header (as defined in clause 0) under the WMPaceInfoEgress

header field when the edge requests the segment.

- It is the edge that defines which endpoint it uses.

If WMPaceInfo was delivered to the origin in ingress form (as part of the HTTP request headers, SEI message,

ISOBMFF box, TS adaptation field or a sidecar file per track), that data shall be extracted and made available in egress

form to the edge as both a HTTP header and dedicated endpoint.

Any direct request from a device with /pathname/WMPaceInfo/filename shall receive an error code 403.

Table 5 gives examples of content flows as ingest to the origin and egress of the origin to the edge.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 29

Table 5: Examples of content flows.

 Live content VOD content

Ingest of the origin

No sidecar file, data is delivered as part of HTTP

headers, SEI messages, ISOBMFF boxes or TS

adaptation field.

For both discrete segments and byteranges, one

sidecar file per track.

Egress of the origin

One sidecar file per segment (note the special case

of HLS low latency with byterange where multiple

chunks are be linked to the same sidecar file, see

clause 5.7.5.4) and HTTP header.

For discrete segments, one sidecar file per segment

and HTTP header.

For byterange, one sidecar file per track.

There are then three endpoints on the origin:

- WMPaceInfo: /pathname/WMPaceInfo/filename

- Variant A: /pathname/${variantPath}filename

- Variant B: /pathname/${variantPath}filename

Where ${variantPath} is as defined in clause 5.3.

NOTE: Adding Variants creates additional endpoints.

5.7.5.3 Discrete Files

For the media segments delivered as discrete files, the flow is shown in Figure 8. The edge sequences the A or B

Variant of a segment based on the WM pattern contained in the token. It has two options to know the position of the

segment within the WM pattern:

- First make a request to the origin to retrieve the WMPaceInfo data. This is done with a GET request using the

path /pathname/WMPaceInfo/filename. The origin provides the WMPaceInfo from the Variant A in the

payload of the response as a sidecar file.

- Once, the data in WMPaceInfo is interpreted in conjunction with the WM pattern, the edge can request to the

origin the right Variant corresponding to the position in the WM pattern that matches the value of position

in WMPaceInfo and then deliver it to the device.

- Make a request for the A and B Variants, extract the WMPaceInfo from one response header and once, the

data in WMPaceInfo is interpreted in conjunction with the WM pattern, the edge can deliver the right Variant

to the device.

NOTE: There is a high probability that the edge will request both A and B Variants, hence adding WMPaceInfo

to the response header allows avoiding an extra request to the origin.

The edge caches the Variants of a given segment with different cache keys and it should prevent the cache keys to be

revealed through debug headers.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 30

Figure 8: Media segment, as discrete file, acquisition.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 31

5.7.5.4 Byterange

For the media segments delivered as byteranges, the flow is shown in Figure 9. The edge delivers the A or B Variant of

a segment based on the WM pattern contained in the token. To know which position in the WM pattern it has to

consider, it needs to retrieve the sidecar file associated to this track. It first makes a HTTP GET request to the origin in

order to retrieve the sidecar file.

Whilst sub ranges within segments, such as chunks, are allowed, the edge shall not deliver byteranges overlapping

several segments with different position values in WMPaceInfo.

NOTE: An example is content delivered with HLS using the EXT-X-PART tag are byterange requests within a

discrete segment. When the edge receives the request for this partial segment, it will request WMPAceInfo

to the origin and will receive a sidecar file with only one WMPAceInfo. This allows the edge to know that

it shall not enforce byterange validation for these requests).

NOTE: Only byteranges overlapping valid ranges are problematic, requests for byteranges included in an allowed

range are not breaking the WM pattern that is created by the A/B Variants and thus can be served.

Once the data in WMPaceInfo is interpreted in conjunction with the WM pattern, the edge can deliver the correct

Variant corresponding to the position in the WM pattern that matches the value of position in WMPaceInfo.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 32

Figure 9: Media segment, as byterange, acquisition.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 33

5.8 Monitoring and Watermark Detection

If content is found, a detection of a WM pattern can be performed. A video acquisition that includes valuable content

(no commercial breaks for example) is performed. As the unique ID is obtained by extracting information from

segments (0 or 1 in every segment), the acquired content must be of several minutes (the longer the segments are, the

longer the acquired video is). The video is then processed by the watermarking provider in order to extract the unique

ID. This ID is then provided to the relevant entity that can match it to a device, user or streaming session and take the

desired actions.

How the detection is performed, and the revocation of the WM token is performed are out of the scope of this

document.

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 34

Annex A:
Vendor Specific Core API (normative)

A.1 Introduction

In case of a token in indirect mode, it is expected that a vendor specific core (identified by wmvnd) generates the WM

pattern (referred as wmpattern). This means that this requires some interaction between the edge and this vendor

specific core. To facilitate this integration, the following defines the API made available by the vendor specific core.

A.2 Edge-Vendor Specific API

It is assumed that:

- The call to the API function is blocking and the edge waits for the vendor specific core to end its processing.

- The verification of the token is done before the call to the function. Verification includes the validation of the

signature.

The inputs are the values of the claims of the token that are relevant for the generation of the WM pattern.

const crypto = require('crypto');

function generate_wmpattern (token.wmpatlen, token.wmkeyver, token.wmid,

token.wmopid)

{

 /* vendor specific processing */

 return wmpattern;

}

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 35

Annex B:
Examples of Workflows (informative)

B.1 Introduction

This annex takes the DASH-IF ingest protocol [i.1] as a reference. There are two interfaces defined:

- Interface 1, where the combination of packager and origin is able to perform additional re-packaging hence the

structure of ingest and egress may differ. Each POST/PUT contains one CMAF segment. This is often referred

to an active receiving entity as a Just in Time Packager (JITP)

- Interface 2, where the combination of packager and origin does not perform additional re-packaging, the

structure of ingest and egress may be the same. The receiving entity is “passive”, the source produces all

objects in form that devices can consume. Each POST/PUT implicitly refers to one addressable object in an

MPD or playlist.

Therefore, the receiving entity is either active (interface 1) or passive (interface 2) and this leads to the following

possibilities:

- CMAF ingest, active receiving entity (JITP)

- HLS/DASH ingest, active receiving entity (JITP)

- HLS/DASH ingest, passive receiving entity

Given all the options for carrying WMPaceInfo (see clause 0), the following describes some example flows for Live and

VOD content.

B.2 Live Content Flows

For an active receiving entity (JITP), the grouping is non-trivial (as defined in [i.1] clause 6.2), therefore, as described

in clause 0, the manifests are sent. The JITP may aggregate ingress segments according to (firstpart, lastpart)

and WMPaceInfoEgress will reflect the aggregated result. In addition, evidence of WM process (such as the essential

properties) is removed from egress playlists.

If using the WMPaceInfoIngest header field on interface 1, the flow from the encoder to the edge is shown in Figure

10.

Figure 10: Flow when using WMPaceInfoIngest and WMPaceInfoEgress header fields.

Another possible option is using sidecar file, this leads to the flow shown in Figure 11.

PUT/ingest-segment

WMPaceInfoIngest: <json>

Active

Receiving

Entity

Edge Ingest Source

Store ingest-segment &

WMPaceInfoIngest

GET/egress-segment

WMPaceInfoEgress: <cbor>

JITP translates

WMPaceInfoIngest to

WMPaceInfoEgress upon
request from edge

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 36

Figure 11: Flow when using WMPaceInfoIngest header field and sidecar file.

Another option is using SEI data. In this case, the receiving entity, either leaves WMPaceInfo in segment when storing

and then overwrites it when serving after translating to WMPaceInfoEgress header or overwrites it before storing and

saves the WMPaceInfo data somewhere else. the flow shown in Figure 12.

Figure 12: Flow when using SEI data and WMPaceInfoEgress header field.

With a passive receiving entity, there is no media manipulation downstream of ingest source, therefore transferring

WMPaceInfo data within the media is not an option, as it is not possible to overwrite it. Figure 13 shows a possible

flow with sidecar files.

Figure 13: Flow when using sidecar files.

PUT/ingest-segment

WMPaceInfoIngest: <json>

Active

Receiving

Entity

Edge Ingest Source

Store ingest-segment &

WMPaceInfoIngest

GET/WMPaceInfo/egress-segment

GET/egress-segment

JITP translates

WMPaceInfoIngest to sidecar

file upon request from
edge

PUT/ingest-segment

SEI: WMPaceInfo()

Active

Receiving

Entity

Edge Ingest Source

Store ingest-segment &

SEI

GET/egress-segment

WMPaceInfoEgress: <cbor>

JITP translates SEI to

WMPaceInfoEgress upon
request from edge

PUT/egress-segment

PUT/WMPaceInfo/egress-segment

Passive

Receiving

Entity

Edge Ingest Source

Store egress-segment &

Sidecar file

GET/WMPaceInfo/egress-segment

GET/egress-segment

Encoder only sends

egress WMPaceInfo in

sidecar file when

pushing to origin

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 37

B.3 VOD Content Flows

If VOD content is prepared using live profile, then the permutations presented in clause 0 are applicable. In addition,

another option is that a single sidecar can describe all segments using regex for segmentRegex. This latter case leads

to the flow shown in Figure 14.

Figure 14: Flow when using sidecar files for VOD live profile.

If VOD content is prepared using on-demand profile, then the sidecar file is the only mechanism available to deliver

WMPaceInfo data. This leads to the flow shown in Figure 15.

Figure 15: Flow when using sidecar files for VOD on-demand profile.

For each segment of each representation

PUT/segment

After

PUT/WMPaceInfo/sidecar

PUT/manifest

Receiving

Entity
Edge Ingest Source

GET/egress-segment

GET/WMPaceInfo/sidecar

Store segments,

sidecars and manifest

For each representation

PUT/trackfile

PUT/WMPaceInfo/trackfile

After

PUT/manifest

Receiving

Entity
Edge Ingest Source

Store trackfiles,

sidecars and manifest

GET/manifest

GET/WMPaceInfo/trackfile
GET/trackfile

Edge validates that

byteranges do not

overlap several

segments with different

position values

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 38

Annex C:
Code for Web Sequence Diagram (informative)

C.1 Introduction

This Annex provides is the code for generating all workflows shown in figures 6-9 to be used on

https://websequencediagrams.com

C.2 Figure 6
Participant Encoder

Participant Packager

Participant Origin

STEP 1: Ingest from the encoder to the packager

For instance, the segmentation is 1s long

Encoder -> Packager: Ingest manifest

Encoder -> Packager: Ingest segments Variant A\n (w/ WMPaceInfo)

Encoder -> Packager: Ingest segments Variant B\n (w/ WMPaceInfo)

STEP 2: Ingest from the Packager to the Origin (e.g. 2S long segments)

The Packager has to aggregate several DASH segments to produce the

distributed segment

Packager-> Origin: Egress manifest

Packager-> Origin: Egress segments Variant A\n (w/ WMPaceInfo)

Packager-> Origin: Egress segments Variant B\n (w/ WMPaceInfo)

C.3 Figure 7
Participant Origin

Participant CDN Edge

Participant Device

STEP 1: Acquire a WM token

opt WM token acquisition

 note over Origin,Device: Implementation specific

end

STEP 2 : Get the DASH manifest or HLS playlist for the viewing session

alt Obtain DASH manifest

 Device->+CDN Edge: Get MPD(WM token)

 opt Manifest cache miss

 CDN Edge->+Origin: Get MPD

 Origin->Origin: Create a neutral MDP

 Origin-->-CDN Edge: MPD

 CDN Edge->CDN Edge: Cache MPD

 end

 CDN Edge-->-Device: MPD

else Obtain HLS playlists

 Device->+CDN Edge: Get master/media playlist(WM token)

 opt Master/media playlist cache miss

 CDN Edge->+Origin: Get master/media playlist

 Origin->Origin: Create neutral master/media playlist

 Origin-->-CDN Edge: master/media playlist

 CDN Edge->CDN Edge: Cache master/media playlist

 end

 CDN Edge-->-Device: Master/media playlist

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 39

end

C.4 Figure 8
Participant Origin

Participant CDN Edge

Participant Device

loop Segment request for playback

 Device->+CDN Edge: GET /pathname/segment_i(WM token)

 CDN Edge->CDN Edge: Validate WM token

 alt Invalid WM token

 CDN Edge-->Device: 401 Unauthorized

 else Valid WM token

 alt Use the dedicated endpoint for WMPaceInfo

 opt WMPaceInfo cache miss

 CDN Edge->+Origin: GET /pathname/WMPaceInfo/segment_i

 note right of Origin

 Origin retrieves WMPaceInfo for this segment and delivers

it

 end note

 Origin-->-CDN Edge: 200 OK response

 CDN Edge ->> CDN Edge: Cache response

 end

 else Retreive WMPaceInfo from response header

 opt Variants cache miss

 CDN Edge->+Origin: GET /pathname/${variantPath}segment_i

 Origin-->-CDN Edge: 200 OK response

 CDN Edge ->> CDN Edge: Cache response

 CDN Edge->+Origin: GET /pathname/${variantPath}segment_i

 Origin-->-CDN Edge: 200 OK response

 CDN Edge ->> CDN Edge: Cache response

 end

 end

 alt Invalid Request: no WMPaceInfo for this segment

 CDN Edge-->Device: 400 Bad Request

 else Valid Request: WMPaceInfo available for this segment

 CDN Edge ->> CDN Edge: Create WMPaceInfoObject from cache

 CDN Edge ->> CDN Edge: VAR=getVariant(WM token, WMPaceInfoObject)

 alt If using the dedicated endpoint for WMPaceInfo

 opt Segment Variant cache miss

 CDN Edge->+Origin: GET /pathname/${VAR}/segment_i

 Origin-->-CDN Edge: 200 OK /pathname/${VAR}/segment_i

 CDN Edge ->> CDN Edge: Cache /pathname/${VAR}/segment_i

 end

 end

 CDN Edge-->Device: 200 OK with /pathname/segment_i(Variant

${VAR})

 end

 end

 Device->Device: Play Content

End

C.5 Figure 9
Participant Origin

Participant CDN Edge

Participant Device

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 40

loop Segment request for playback (including init segment)

 Device->+CDN Edge: GET /pathname/filename(WM token, byterange)

 CDN Edge->>CDN Edge: Validate WM token

 alt Invalid WM token

 CDN Edge-->Device: 401 Unauthorized

 else Valid WM token

 opt WMPaceInfo cache miss

 CDN Edge->+Origin: GET /pathname/WMPaceInfo/filename

 note right of Origin

 Origin retrieves WMPaceInfo sidecar file for

 this file and delivers it

 end note

 Origin-->-CDN Edge: 200 OK response

 CDN Edge ->> CDN Edge: Cache response

 end

 alt Invalid Request: no WMPaceInfo for this file

 CDN Edge-->Device: 400 Bad Request

 else Valid Request: WMPaceInfo available for this file (one or many

objects)

 CDN Edge ->> CDN Edge: Create WMPaceInfoObjects list from cache

payload

 CDN Edge ->> CDN Edge:

WMPaceInfoObject=getObject(WMPaceInfoObjects,byterange)

 alt Invalid byterange request

 CDN Edge-->Device: 400 Bad Request (Invalid byterange)

 else Valid byterange request

 CDN Edge ->> CDN Edge: VAR=getVariant(WM token,

WMPaceInfoObject)

 opt Byterange cache miss

 CDN Edge->+Origin: Get

/pathname/${VAR}/filename(byterange)

 note right of Origin

 The returned payload may be larger than the requested

 byterange (Partial Object Caching)

 end note

 Origin-->-CDN Edge: 206 Partial Content

 CDN Edge ->> CDN Edge: Cache

/pathname/${VAR}/filename(byterange)

 end

 opt Partial Object Caching

 CDN Edge->>CDN Edge: Construct byterange response from

locally cached object\n/pathname/${VAR}/filename(byterange)

 end

 CDN Edge-->Device: 206 Partial Content

 end

 end

 end

 Device->Device: Play Content

End

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 41

DASH-IF

DASH-IF CTS 00XX V0.9.0 (2023-02) 42

Annex (informative):
Change History

Date Version Information about changes

2022-03-23 0.8.0 Version published for first community review.

2022-02-02 0.9.0 Version published for second community review.

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of Terms, Symbols and Abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 OTT Watermarking Using Variants
	5 Server-Driven Architecture and Workflows
	5.1 Introduction
	5.2 Functional Architecture
	5.3 System Configuration
	5.4 WM Token
	5.5 WMPaceInfo
	5.5.1 Introduction
	5.5.2 WMPaceInfo Data
	5.5.3 Conveying WMPaceInfo
	5.5.3.1 Introduction
	5.5.3.2 Sidecar File
	5.5.3.3 HTTP Header
	5.5.3.4 ISOBMFF Box
	5.5.3.5 SEI Message
	5.5.3.6 TS Adaptation Field

	5.6 Content Preparation
	5.6.1 Introduction
	5.6.2 Encoding Recommendations
	5.6.3 Delivering Content and WMPaceInfo from the Encoder to the Packager
	5.6.4 Segment Ingress Path Structure on the Origin
	5.6.4.1 Introduction
	5.6.4.2 Locating the Variants
	5.6.4.3 Locating the Sidecar File

	5.6.5 Packaging Recommendations

	5.7 Content Playback
	5.7.1 Introduction
	5.7.2 Dynamic Ad Insertion
	5.7.3 WM Token, DASH Manifest and HLS Playlists Acquisition
	5.7.4 Initialisation Segment Acquisition
	5.7.5 Media Segments and WMPaceInfo Acquisition
	5.7.5.1 General Requirements
	5.7.5.2 WMPaceInfo Acquisition
	5.7.5.3 Discrete Files
	5.7.5.4 Byterange

	5.8 Monitoring and Watermark Detection
	Annex A: Vendor Specific Core API (normative)

	A.1 Introduction
	A.2 Edge-Vendor Specific API
	Annex B: Examples of Workflows (informative)

	B.1 Introduction
	B.2 Live Content Flows
	B.3 VOD Content Flows
	Annex C: Code for Web Sequence Diagram (informative)

	C.1 Introduction
	C.2 Figure 6
	C.3 Figure 7
	C.4 Figure 8
	C.5 Figure 9
	Annex (informative): Change History

