ammDASH

== = = Industry Forum

New Candidate Technical Specification
DASH-IF CTS Part XX rev QO Current version: 09.1

Status:

|

| Draft

[Internal Review | X [Community Review | |Editor's Proposal | |Agreed

Title:

DASH-IF Forensic A/B Watermarking

Source:

DASH-IF Interoperability Working Group
DASH-IF Content Protection and Security TF

Supporting

Companies:

Nagra, Akamai, AWS, Irdeto, Synamedia, Verimatrix

Category:

Candidate Technical Specification | Date:[2023-02-10

Abstract:

The scope of this work is the definition of an architecture and an Application
Programming Interface (API) for supporting A/B forensic . watermarking for Over-
The-Top (OTT) on content that is delivered in an Adaptive Bitrate (ABR) format. To
the possible extend, the proposed solutions do.not make assumptions on the ABR
technology that is being used, it can be for example;-DASH or HLS. A/B forensic
watermarking means that at least two watermarked versions of content (variant A
and variant B) are delivered up to a CDN edge server from the encoder. The edge
server is responsible for delivering either the*A or B variant of every segment to the
device.

While digital watermarking can be used for different use cases, this work will focus
on forensic use cases. In this'context, it is used to define the origin of content
leakage. The watermarking technology modifies media content in a robust and
invisible way in order to encode a unique identifier, e.g., a unique session ID. The
embedded watermark provides means to identify where the media content, that has
been redistributed without authorization, is coming from. In other words, the
watermark is used. to forensically trace the origin of content leakage.

Disclaimer:

This document is a candidate Technical Specification. DASH-IF is expecting to
publish this initially, but to submit the specification to a formal specification
organization. The primary choice is ETSI, for which DASH-IF has a PAS
agreement.

This document is not yet final. It is provided for public review until the deadline
mentioned below. If you have comments on the document, please submit
comments by one of the following means:
- at the github repository https://github.com/Dash-Industry-
Forum/Watermarking/issues, or
- the mailing list at iop@dashif.org
Please add a detailed description of the problem and the comment.

Based on the received comments a final document will be published latest by the
expected publication date below if the following additional criteria are fulfilled:
- All comments from community review are addressed
- Atime plan for test, conformance and reference tools are available. This
includes availability of test services and an implementation oin the dash.js
reference tools

=mmDASH

= = = |Industry Forum

Commenting Feb 28, 2023

Deadline:

Expected Mar 31, 2023

Publication:

Other Comments This document is pending registration of CBOR tags and claims integer keys

registration with IANA and 4CC code registration with MP4RA. The values provided
in the documents are only indicative and may change with the final version.

The version published as v0.9.1 on February 10, 2023 adds IANA and MP4RA
registration annexes

DASH-“: CTS OOXX V0.9.0 (2023-02)

emmDASH

= = mm |[ndustry Forum

DASH-IF Candidate Technical Specification:
DASH-IF Forensic A/B Watermarking

An interoperable watermarking integration schema

4 DASH-IF CTS 00XX V0.9.0 (2023-02)

DASH Industry Forum

3855 SW 153rd Dr.
Beaverton, OR 97003 - USA

Email : admin@dashif.org

Important notice

The present document can be downloaded from:
http://www.dashif.org/guidelines

DASH-IF

http://www.dashif.org/guidelines

5 DASH-IF CTS 00XX V0.9.0 (2023-02)

Contents

INtellectual PrOPerty RIGNES ..ottt st et re e be s te e b e s beete e besreenenre e 7
0] 1= o o OSSPSR 7
Modal VErDS tEIMINOIOGYc.veueeiieiieiiiiiiie ettt et b bbb nren e eneas 7
EXECULIVE SUMIMAIYtiviitieie sttt ettt ste et s st e st e te e s e st e e te e besbe e s s e bease e eesbeessesbeeteenbesbeese e tesaseeestaeneeseeateenrennes 7
1 ST 0To] o TP PP PRSP P 8
2 [C T =) TS TPRRTPRSS 8
2.1 NOFMALIVE FEIEIENCES ... e tiiee ettt bttt et et bt st e s b e e bt e st et et st e ebesbeebeebeeneeneesbenbeseeeneenes 8
2.2 INFOIMALIVE FEFEIBINCES .. .eie ittt ettt e et e b beebeebeene e s e e e e beseesbesneaneas 8
3 Definition of Terms, Symbols and ABBreviations............cccceiiiieiiieeie e 9
3.1 LI T PP R PSP UPT PR PRPROTN 9
3.2)Y 1] 010 OSSR PSSR 9
3.3 AADDIEVIALIONS. ...ttt bbbttt eh e bt bt bt e bt s e e b e eb e bt s bt e bt bt eh b e e b e bbb e bt et 9
4 OTT Watermarking USING VaITANTScciiiiiiiieieisesese ettt 10
5 Server-Driven Architecture and WOrKFIOWScc.oiiiiiiiiiieees e 11
51 INEFOTUCTION. ...ttt bbbt b bt bt bt e bt e s b e b e eb e bt e bt eb e e bt e st et e nb e besbe et e ene e 11
5.2 FUNCLIONAT ATCRITECTUNE ... bbb bt bbbt et e bbb b nbe e 11
5.3 YA I O] o) 1o 0 LA o] o SR 11
5.4 WWVIM TOKEIN ...ttt bbb bbbt e s ettt e bt e b e bt e bt e b e e R b et eb e e b e e b e eh e e b e e m b e b e eb e beebe et e ene e 12
55 WWIMPACEINTO ...ttt b bbbt b s e b e nb bt e bt bt et e e bb e e et e besbesbeeseenne e 14
55.1 Lol [FTox 1 o] o OSSO PRSP UTT PP PRPRUROPRRE: 14
55.2 QYL L Vo]) (o - P 15
553 CoNVEYING WIMPACEINTOc.viuiiiiiiiite bbb s e 15
55.3.1 LT 11 Tox o] PSSR S S 15
55.3.2 ST =Tt TSSO S ST 15
55.3.3 I =T o LT PN ST 17
55.34 IO =Y = o) U S S TSR 17
55.35 IS = I Lo TEST: o = TP S COPRTR 18
5.5.3.6 TS AAAPLAtiON FIEIA ...c.vieiieiece e Saeeee Fesntestaesteesteesreeneeas 18
5.6 (000 0] T a1 =T o= T - LA o] S U S SRS OSSR 19
5.6.1 INEFOAUCTION ...ttt bbbt bt e TRttt be bt et et et e b et sbe et e ene e 19
5.6.2 ENcoding RECOMMENUALIONSc.eciiiiieiiecti et eie e e e sme e b e s b e e te s s e steesaeesteenteenteeneennee e 19
5.6.3 Delivering Content and WMPacelnfo from the Encoder to the Packager..cccooevvereiiinennieneneiee, 19
564 Segment Ingress Path Structure 0N the OFIgiN ..o s b e 20
5.6.4.1 LT 11 Tox o] O S S 20
5.6.4.2 LOCAtiNg the VariantS.......c.cviiieiiiieise e Bttt 20
5.6.4.3 Locating the STAECAr FIlecoiiiiiiiii e B ettt 23
5.6.5 Packaging RECOMMENTALIONS.cuiiiiieiii ittt et bbb e b e 25
5.7 CONENE PLAYDACKveeee et et bbbttt b e bbbt e bt et e e e b e nbesbeebeens 25
57.1 Lol [FTox 1 o] o OO U RTO ST P TSR 25
572 DYNAMIC A INSEITION ...ttt bbbt e b e bbbt et et e b sbesbesaeereens 26
573 WM Token, DASH Manifest and HLS Playlists ACQUISTTIONcccoiiiiiiiiieiiie e 26
574 Initialisation SEgMeNt ACGUISTTIONiiiiiiiiiee et bbbt se bbb 27
575 Media Segments and WMPACeINTO ACQUISTEIONo.oiiiiiiiiiie e e 28
5751 GENEral REGUITEIMENTS ...ttt bbb bbbttt e st 28
5752 WIMPACEINTO ACGUISTEION ...ttt ettt ettt 28
5.75.3 o] =] (=N =TSSR 29
5754 Y] = T =SSOSR 31
5.8 Monitoring and Watermark DEtECLIONccveiviieierire ettt ne et e e sresresneeneas 33
Annex A: (normative) Vendor SPecCific COre APl ...t 34
AN R 111 0o L1 ot o o SRS 34
A2 Edge-Vendor SPECITIC APc.o bbbt 34

DASH-IF

6 DASH-IF CTS 00XX V0.9.0 (2023-02)

Annex B: (informative) Examples of WOrKFIOWS...........c.coviiiiiiiiicee s 35
B.L1 INEFOTUCTION ...ttt bbbtk b b bbbt s bbb bbbt 35
B.2 LiVE CONENT FIOWS ...ttt bbbttt ettt bbbt 35
B.3 WOD CONENE FIOWS. ... oottt sttt et sa e te e s e s teeteenbesaeeseenbesneeeesteeneeneennes 36
Annex C: (normative) RegiStration REQUESTSccoveiiiiiiiiie s 38
(O R €= o= - | USSR 38
C.2 T ANA CONSIABIALIONSc.vivviuiesieiietisti st sttt ettt sttt e bbb e st e se e bt e s b e b e st e b et e s e e seeb e e besbeabesbe b ennenean 38
C.3 MPARA REQISIIAIIONuiiieitiiieiie ettt et et e e e be s se e st e s teesbesbeese e besseesbesteensesresteenrenres 39
Annex D: (informative) Code for Web Sequence Diagramcccocvvvieiiiiiie i 41
D 25 R 1o (0o (1 o OSSOSO 41
D2 FHQUIE B .ottt bbb bR R R R R b ettt E bbb bt 41
IR B o U] (= RSSO 41
D o] (- OSSR 42
D5 FHUIE O et bbb R R h R R b et b bbb b n e 42
Annex (informative): Change HiStONY ..ot ens 44

DASH-IF

7 DASH-IF CTS 00XX V0.9.0 (2023-02)

Intellectual Property Rights

Disclaimer

This is a document made available by DASH-IF. The technology embodied in this document may involve the use of
intellectual property rights, including patents and patent applications owned or controlled by any of the authors or
developers of this document. No patent license, either implied or express, is granted to you by this document. DASH-IF
has made no search or investigation for such rights and DASH-IF disclaims any duty to do so. The rights and
obligations which apply to DASH-IF documents, as such rights and obligations are set forth and defined in the DASH-
IF Bylaws and IPR Policy including, but not limited to, patent and other intellectual property license rights and
obligations. A copy of the DASH-IF Bylaws and IPR Policy can be obtained at http://dashif.org/.

The material contained herein is provided on an "AS IS" basis and to the maximum extent pe mitted by applicable law,
this material is provided AS IS, and the authors and developers of this material and DASH-IF hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of workmanlike effort, and of lack of negligence.

In addition, this document may include references to documents and/or technologies controlled by third parties. Those
third-party documents and technologies may be subject to third party rules and licensing terms. No intellectual property
license, either implied or express, to any third-party material is granted to you by this document or DASH-IF. DASH-IF
makes no warranty whatsoever for such third-party material.

Note that technologies included in this document and for which no test and conformance material is provided, are only
published as candidate technologies, and may be removed if no test material is provided before releasing a new version
of this guidelines document. For the availability of test material, please check https://www.dashif.org.

Foreword

This Technical Specification (TS) has been produced by the DASH-IF Technical Working Group.

Modal verbs terminology

In the present document "shall”, "shall not", "should", "should not", "may", "need not", "will",."will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbalforms for the expression of
provisions).

"must" and "must not" are NOT allowed in deliverables except when used in direct citation.

Executive summary

This document describes proposed architecture and API for supporting forensic watermarking for Over-The-Top (OTT)
on content that is delivered in an Adaptive Bitrate (ABR) format. To the possible extend, the proposed solutions do not
make assumptions on the ABR technology that is being used, it can be for example, DASH or HLS.

While digital watermarking can be used for different use cases, this document will focus on forensic use cases. In this
context, it is used to define the origin of content leakage. the watermarking technology modifies media content in a
robust and invisible way in order to encode a unique identifier, e.g., a unique session ID. The embedded watermark
provides means to identify where the media content, that has been redistributed without authorization, is coming from.
In other words, the watermark is used to forensically trace the origin of content leakage.

DASH-IF

http://dashif.org/
https://www.dashif.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

8 DASH-IF CTS 00XX V0.9.0 (2023-02)

1 Scope

The present document specifies DASH-IF Forensic A/B Watermarking.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are necessary for the application of the present document.

[1] ISO/IEC 23009-1:2021 Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part
1: Media presentation description and segment formats.

[2] ISO/IEC 13818-1:2019 Information technology — Generic coding of moving pictures and associated audio
information — Part 1: Systems URL.: https://www.iso.org/standard/75928.html

[3] R. Pantos. HTTP Live Streaming 2nd Edition. Internet Draft. URL.:
https://datatracker.ietf.org/doc/html/draft-pantos-hls-rfc8216bis-09

[4] C. Bormann, P. Hoffman, Concise Binary Object Representation (CBOR), December 2020. Proposed
Standard. URL.: https://www.rfc-editor.org/info/rfc8949

[5] H. Birkholz, C. Vigano, C. Bormann, Concise Data Definition Language (CDDL): A Notational Convention
to Express Concise Binary Object Representation (CBOR) and JSON Data Structures, June2019. Proposed
Standard. URL.: https://www.rfc-editor.org/info/rfc8610

[6] M. Jones, E. Wahlstroem, S. Erdtman, H. Tschofenig. CBOR Web Token (CWT). May. 2018, URL:
https://www.rfc-editor.org/info/rfc8392

[7] S. Josefsson. The Basel6, Base32, and Base64 Data Encodings. October 2006. URL.: https://www.rfc-
editor.org/info/rfc4648

[8] UHD Forum, Watermarking API for Encoder Integration, version 1.0.1, March 2021. URL.:
https://ultrahdforum.org/guidelines/

[9] The Open Group Base Specifications Issue 7, IEEE, Std 1003.1 2018 Edition, 31 January 2018. URL.:
https://pubs.opengroup.org/onlinepubs/9699919799/

[10] DASH-IF registry of watermarking technology vendors IDs. URL:
https://dashif.org/identifiers/watermarking/

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

DASH-IF

9 DASH-IF CTS 00XX V0.9.0 (2023-02)

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] DASH-IF Live Media Ingest Protocol, URL: https://dashif-
documents.azurewebsites.net/Ingest/master/DASH-IF-Ingest.html

3 Definition of Terms, Symbols and Abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:

Client-driven watermarking: The action of watermarking content when the user device is performing some actions
allowing it to make unique requests for content. The user device embeds a watermarking agent that is integrated
with the application.

Client-side watermarking: The action of watermarking when the user device is the sole responsible for doing the
actual watermarking of content. The user device embeds a watermarking agent that is integrated with the audio-
visual rendering engine.

Server-driven watermarking: The action of watermarking content when the user device is not performing any
other operation than conveying information such as tokens, between servers that are responsible for doing the actual
watermarking of content that is delivered to the user device.

Sequencing: The action of returning a Variant of a segment when it is requested, based on a watermark token.
Typically, this action is performed on a CDN edge server and is thus referred to as “edge sequencing”.

Variant: An alternative representation of a given segment of a multimedia asset. Typically, a Variant is a pre-
watermarked version of the segment.

Watermark (WM) pattern: A series of A/B decisions for every segment that is unique per user device.

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ABR Adaptive Bit Rate

AES Advanced Encryption Standard

AF Adaptation Field

API Application Programming Interface
AVC Advanced Video Codec

CBOR Concise Binary Object Representation
CDN Content Delivery Network

CMAF Common Media Application Format
CWT CBOR Web Token

DAI Dynamic Ad Insertion

DASH Dynamic Adaptive Streaming over HTTP
DRM Digital Rights Management

HEVC High Efficiency Video Coding

HLS HTTP Live Streaming

HTTP Hypertext Transfer Protocol

IP Internet Protocol

ISOBMFF ISO Base Media File Format

JITP Just In Time Packager

JSON JavaScript Object Notation

MPD Media Presentation Description
oTT Over The Top

RIST Reliable Internet Stream Transport
RTMP Real-Time Messaging Protocol

RTP Real Time Protocol

DASH-IF

10 DASH-IF CTS 00XX V0.9.0 (2023-02)

SEI Supplemental Enhancement Information
SRT Secure Reliable Transport
TS Transport Stream

TV Television

UDP User Datagram Protocol

URI Uniform Resource ldentifier
URL Uniform Resource Locator
UuID Universally Unique Identifier
VOD Video On Demand

WM Watermark

WMID Watermark Identifier

WMT Watermark Token

4 OTT Watermarking Using Variants

The objective of forensic watermarking is to deliver a unique version of a media asset to the different users consuming
the asset. This is somewhat in opposition with media delivery mechanisms that aim at delivering the same asset to all
users for efficiency purposes. As a result, in the broadcast era, a typical approach was to perform the watermarking
operation at the very last step of the media delivery pipeline, within the end user device e.g., a set-top box. This solution
has the virtue of leaving the whole media delivery pipeline unaltered but raises security and interoperability challenges
when a large variety of devices owned and operated by the end user shall be supported. This is for instance the case
with over-the-top (OTT) media delivery where content is consumed on mobile phones, tablets, laptops, connected TVs,
etc. As a result, new forensic watermarking solutions have gained momentum that do not perform security-sensitive and
complex operations in the end user realm. While such approaches require minimal changes in the end-user devices, they
do mandate the media delivery pipeline to be modified accordingly.

A notable example of such network-side watermarking solutions is OTT watermarking using Variants for adaptive
bitrate (ABR) content. In this case, the content is delivered by segments. The baseline idea is then to generate pre-
watermarked Variants of each segment and to modify the delivery protocol so that each end user receives a unique
sequence of Variants depending on a watermark pattern that has been assigned to the end user. The semantic of this
pattern is context dependent and can be, for instance, a device identifier, an account identifier, a session identifier; etc.
Figure 1 illustrates a particular case of this strategy, coined as A/B watermarking, where there are two Variants
generated for each segment, each Variant containing a watermark that either encodes the information.“0’ or ‘1°. As a
result, the watermarking system will require the transmission of a sequence of Variants as long as the length of the
pattern to successfully recover the whole unique identifier.

[I I I] ,A”L|—
Ingest | | | | | Deliver Bob
| > —
\—[> [| —
Original asset m'_|—|—|

ABR segments at different

@ bitrates Sequence of ABR segments

received by three users

Ingest ’ | | | | | | | u Deliver =
e

Unique sequence of A/B Variants
received by three users

Original asset

A/B Variants of ABR segments at
different bitrates
(b)

Figure 1: A/B watermarking concept with (a) ABR content delivery and (b) A/B Variants delivery.

When using Variants, the serialization process essentially boils down to delivering a unique sequence of Variants to
each individual end user. There are two main families of methods to achieve this:

1. Server-driven methods, wherein the client does perform no operation related to watermarking. It simply
fetches and forwards a token to the CDN that is responsible for delivering a unique sequence of Variants.

DASH-IF

11 DASH-IF CTS 00XX V0.9.0 (2023-02)

2. Client-driven methods, wherein the client is responsible for the serialization operation. For instance, it relies
on some session-based digital object to tamper the URI ABR segments and thereby directly query a unique
sequence of Variants from the CDN.

This document is describing the server-driven methods. Client-driven methods are not part of this document.

5 Server-Driven Architecture and Workflows

51 Introduction

In the server-driven architecture, the device is unaware that content it consumes is watermarked. The device only
exchanges a token with servers allowing these servers, usually CDN edges, to make the decision on which A or B
Variant it delivers to the device. In this document, an end-to-end system is presented. It includes the definition of
watermarking metadata that limits the need for naming conventions by allowing the encoder to send this metadata all
the way to the edge through origins to enable the sequencing of bits. The following goes through the functional
architecture and describes the workflows when preparing content and when consuming content.

In the following, it is assumed that the edge is a CDN edge. There are optional architectures, but this does impact the
overall functional architecture and workflows. It is also assumed that multi-track content (audio and video multiplexed
in one segment) is out of the scope of this document. In addition, all the workflows are only examples of possible
implementations.

5.2 Functional Architecture

Figure 2 shows the simplified high-level functional architecture and the different interaction between the components
that are involved in the flows when a device consumes watermarked content. Note that this also shows that content is
encrypted, as watermarking will likely be added for premium content that is also encrypted and protected by a DRM
system.

Encoder/ i
Watermarker | A and B Variants
A 4

|m— e m e — - = — » Packager

Content keys & 4 A and
DRM information v

B Variants

Origin

A and B Variants

[-
P

A 4 \ 4
Auth i ti WMT
uthorization DRM Server Edge
Server Generator
A A A
1 1 \ *
' . WM tokens ;
Authz token AUth% token ; WM token !
License A or B Variant

I ')

1 1 \ 4

1 I

e e e e e e = B > Device

Figure 2: Functional architecture.

To consume content, a device needs, at minimum, to have an authorization token (for getting a DRM license) and a
WM token that contains a WM pattern, a series of A or B decisions. The device is responsible for obtaining the required
data before requesting segments to the CDN.

5.3 System Configuration

Enabling or disabling the edge sequencing logic is set through the configuration to the edge. As an example, this can be
useful for a service of live sporting events where only premium events require watermarking enforcement. Other
moments of the day do not require it. In this case, content is still watermarked but the edge is only configured to

DASH-IF

12 DASH-IF CTS 00XX V0.9.0 (2023-02)

sequence during the limited period of time of the premium event. When sequencing is disabled, the edge shall consume
segments on the endpoint for Variant A. If this endpoint is not working properly, the origin shall deliver any available
Variant on this endpoint.

NOTE: When enabling watermarking, all devices that do not have a WM token will receive an error when
requesting content, hence they are then forced to request such token.

NOTE: Asanexample, enabling and disabling sequencing can be done with an API enable (true/false).

Watermarked objects names shall include a pattern that the CDN can match to differentiate these objects from non-
watermarked objects (initialization segments, subtitles, trickplay images). As an example, for a DASH manifest located
at https://edge.hostname/path/to/endpoint/index.mpd that references video segments as

<SegmentTemplate timescale="60000"

media="video segment SRepresentationID$ $Time$.mp4"
initialization="video init SRepresentationID$.mp4" startNumber="10967120"
presentationTimeOffset="903486496960">

the pattern for the differentiation of these objects from non-watermarked objects is video_segment .

One of the following identification schemes, referred as variant1d in this document, shall be used for the
identification of the Variants:

- A lower-case letter beginning with ‘a’. Variants are then ‘a’, ‘b’ and so on.
- A number beginning with 0. Variants are then 0, 1 and so on.

When addressing content, variantId shall be translated into variantpath as follows:
- variantPath = ${variantId} followed by ‘/° or ‘.’

- As an exception, if ${variantId} is ‘a’ or ‘0’ then ${variantPath} may be empty

54 WM Token
A WM token provides a WM pattern which is unique (for example per streaming session or per user). Thispattern
allows the sequencing of A/B Variants.

Two tokenisation schemes are defined in this document. The first, named direct, embeds the WM pattern.in the token
and can be opened and interpreted by an edge irrespective of the underlying WM technology and provider. The second,
named indirect, requires integration of a WM technology provider's edge sequencing software at.the edge.

The following are requirements on the WM token:
- The token shall be a CWT token, the basic structural requirements are defined in [6].
- The token shall be with integer keys in “deterministically encoded CBOR(as:specified in [4] clause 4.2.
- Recipients shall process claims listed in [6] clause 3.1 when they are present. 'exp and iat shall be present.

- The token shall include either a WM pattern (direct mode) or data for.deriving the WM pattern (indirect
mode). Absence of a wmpattern claim implies that the token is'in indirect mode.

- Recipients shall support direct mode and may support indirect mode.

- The token shall be signed as described in clause 7 of [6]. Recipients shall support the HMAC 256/256 (kty
number 5) and ES256 (kty number -7) algorithms.

- The token shall be base64url-encoded as described in clause 5 of [7].
The following claims are defined and Table 1 provides the integer claim keys.

wmtoken = {
wmver—-label ~ => wmver-value,
wmvnd-label * => wmvnd-value,
wmpatlen-label ~ => wmpatlen-value,
? wmsegduration-label * => wmsegduration-value,
wmtoken-direct // wmtoken-indirect,
*wmext-label => any

}

wnver-value = uint .size 1

DASH-IF

13 DASH-IF CTS 00XX V0.9.0 (2023-02)

wmvnd-value = uint .size 1

wmpatlen-value = uint .size 2

wmsegduration-value = [(wmtimeticks : uint, wmtimescale : uint)]
wmext-label = int

; direct mode
wmtoken-direct = {
wmpattern-label »~ => wmpattern-value

}
wmpattern-value = COSE Encrypt0 // bytes

; indirect mode

wmtoken-indirect = {
wmid-label * => wmid-value
wmopid-label ~ => wmopid-value
wmkeyver-label ~ => wmkeyver-value

}

wmid-value = text

wmopid-value = uint

wmkeyver-value = uint

Table 1: Integer Claim keys values for the WM token.

Claim label Integer key
(Temporary values)
wmver—-label 300
wmvnd-label 301
wmpatlen-label 302
wmsegduration-label 303
wmpattern-label 304
wmid-label 305
wmopid-label 306
wmkeyver-label 307

wmver
The version of the WM Token. Recipients shall support this claim. This document describes version 1.

wmvnd
The WM technology vendor. Recipients shall support this claim. This provides the context for the'key material
needed for signature verification. In the direct mode, it also provides the context for the key'material needed
for decrypting wmpattern if needed. In the indirect mode, it identifies the vendor Specific core to use. A list of
WM technology vendor identifiers is available at [10].

wmpatlen

The length in bits of the WM pattern. Recipients shall support this claim.

wmsegduration
The nominal duration of a segment. This claim is optional. Recipientsimay support this claim. When
WMPaceInfo data is not available, this may allow the edge to define-the index to be considered in the WM
pattern. If wMpPaceInfo is available, this claim shall be ignored. The array contains exactly 2 values. The first
value is a duration in time ticks where its base unit is defined by the second value. The second value is the
scale in number of time ticks per second. As an example, [60°000, 10°000] means that the segments are 60’000
ticks long while the scale is 10’000 ticks per second, wmsegduration is then equal to 6 seconds.

wmpattern
The WM pattern. Recipients shall support this claim in direct mode. It is recommended to encrypt the pattern.
Recipients shall support the A256GCM algorithm (kty number 3).

wmid
Used as input to derive the WM pattern for indirect mode. Recipients shall support this claim in indirect mode.
The derivation algorithm is not defined in this document and is vendor specific.

wmopid
Used as additional input to derive the WM pattern for indirect mode. Recipients shall support this claim in
indirect mode.

wmkeyver
The key to use for derivation of the WM pattern in indirect mode. Recipients shall support this claim in
indirect mode.

DASH-IF

14 DASH-IF CTS 00XX V0.9.0 (2023-02)

The following example is an excerpt from a WM token for the direct mode. In this example, wmpattern is encrypted.
{

/wmver/ : 1,

/wmvnd/ : 14,

/wmpatlen/: 124,

/wmpattern/: "5h0dS05QcLEVSyjlZnFImDGR1ipgqw949MgYfanFIyMI=""

}

The flow of the operations when retrieving the WM pattern for the above example is shown in Figure 3. Note also that
the claims listed below constitute the minimal set of claims necessary to produce a valid WM pattern when wmpattern
is encrypted.

wmpatlen

Figure 3: Example of flow for retrieving the WM pattern in the direct case.

The following example is an excerpt from a WM token for the indirect case.
{

/wmver/ : 1,

/wmvnd/ : 14,

/wmpatlen/: 2048,

/wmid/ : "33a388f5-2109-456f-bf2b-c6780b75c918",
/wmopid/: 40,

/wmkeyver/: 3

}
The flow of the operations when deriving the WM pattern from the provided parameters for the above example is
shown in Figure 4. Note that there is a vendor specific core (identified by wmvnd). It is recommended that, performance-
wise and software-stack-wise, it is comparable with the direct case. In other words, the vendors specific core should'be
based on the crypto operations which are used in the direct mode, and its performance should be equivalent.‘For
example, the direct mode relies on one decryption operation when wmpattern is encrypted, the vendor Specific core
should be consisting of the similar operations to preserve the quantity of operations comparable between-these two
modes.

wmkeyver stored
keys

o

wmvnd

vendor
specific
core

) 4

wmid WM pattern

wmopid

wmpatlen

HERIEIE

Figure 4. Example of flow for retrieving the WM pattern in the indirect case.

55 WMPacelnfo
551 Introduction

When a device requests a segment, the edge sequencing logic needs to know which bit in the unique WM pattern to
consider for retrieving either A or B Variant of the requested segment before delivering it to the device. wMPaceInfo
contains this mapping in addition to some data needed for content preparation. It is transmitted from the encoder (that is
combined with the watermarking pre-processor) to the following servers that may need it (packager, origin, or edge).

DASH-IF

15 DASH-IF CTS 00XX V0.9.0 (2023-02)

55.2 WMPacelnfo Data

WMPaceInfo isas shown in Table 2.
Table 2: WMPacelnfo data.

Attribute Producer Consumers Purpose
variant Encoder Edge Integration, debugging
position Encoder Edge Bit position in the WM pattern
firstpart Encoder Packager, Origin | Egress packaging
lastpart Encoder Packager, Origin | Egress packaging

Where

- variant gives the Variant identification, 0, 1 and so on. This information can be useful up to the edge for
verifying that the right Variant has been obtained.

- position isthe index in the WM pattern to consider for this segment. Positions are zero-based. When it is
equal to -1, the corresponding segment is not watermarked. For example, position=33 indicates that this
segment refers to position 34 of the WM pattern.

- firstpart informs whether this segment is the first one with this position value. It is equal to true if this is
the case, otherwise it is equal to false. See clause 5.6.2 for further details.

- lastpart informs whether this segment is the last one with this position value. It is equal to true if this is
the case, otherwise it is equal to false. See clause 5.6.2 for further details.

55.3 Conveying WMPacelnfo
553.1 Introduction

WMPaceInfo is delivered from the encoder to other servers. There is no unique mechanism for this. This document
does not recommend one preferred option applicable for all protocols, Table 3 only present some possible options for
conveying wMpaceInfo With a preferred option for some protocols (in bold in the table). The following goes through
these different options.

Table 3: Possible options for conveying WMPacelnfo information.

Ingest protocol WMPacelnfo delivery.options
RTMP SEI
RTP/UDP/RIST/SRT SEl, TS adaptation field
HLS/TS over HTTP POST HTTP header; SEl
CMAF-based protocols/formats (HLS/fMP4, DASH) over HTTP POST HTTP header,;ISOBMFF box, SEI
File access protocol ISOBMFF box, SEI, sidecar file

553.2 Sidecar File

When segments (discrete files or byteranges) are delivered with a file transfer protocol, it may be convenient to have
WMPaceInfo data in a sidecar file. For efficiency, the wMpaceInfo data is not copied directly as some would be
included multiple times.

The sidecar file is of the following format (using CDDL representation [5]) and shall be encoded using deterministically
encoded CBOR as specified in [4] clause 4.2 with integer keys.

; Maps Integer Keys (Temporary values)
version =
segments

fileSize =
startRange =
segmentRegex =
position =
firstpart =
lastpart =

0 J o U b W

discrete-segment = {

DASH-IF

16 DASH-IF CTS 00XX V0.9.0 (2023-02)

?segmentRegex : text,

position : int .size 2 .ge -1,
?firstpart : bool,
?lastpart : bool
}
byterange-segment = {
startRange : uint .size 8,
position : int .size 2 .ge -1
}
sidecar-discrete = {
version : uint .size 1,
segments : [+ discrete-segment]
}
sidecar-byterange = {
version : wuint .size 1,
fileSize : uint .size 8,
segments : [+ byterange-segment]
}
sidecar = (sidecar-byterange // sidecar-discrete)

When segments are discrete files:
- sidecar shall contain only sidecar-discrete elements.
- version isset to 1 for sidecar files compliant to this document.

- segmentRegex IS a POSIX extended regular expression as described in clause 9 of [9]. It allows to define the
filename of the segments for which the data applies. segmentRegex is optional.

- position, firstpart and lastpart are defined in clause 0. firstpart and lastpart are optional.

NOTE: Using regular expressions and file naming conventions allows reducing the number:of required side car
files. The same side car file could be used for all renditions for example. This allows. the origin to reduce
the number of sidecar files, but the edge will always receive several copies of the same data as caching is
done on the exact filename. It is recommended to balance the advantages and disadvantages of regular
expressions, because of its CPU load on the origin.

The following is an example for a set of segments where the filenames satisfy the segmentRegex expression. In this
example, the filenames are in the form of video segment [repID] 123.mp4;
video segment [repID] 124.mp4 and so on, allowing to have one sidecar file for all Representations (for DASH).

sidecar (
/version/ 1,
/segments/ [{/segmentRegex/ "video segment .*? 123.mp4", /position/ 21},
{/segmentRegex/ "video segment .*? 124.mp4", /position/ 22}]

When segments are byteranges:
- sidecar shall contain only sidecar-byterange elements.
- versionissetto 1 for sidecar files compliant to this document.
- fileSize isthe size of the track in bytes.

- startRange defines the position of the first byte in the byterange. This expressed as a byte offset from the
beginning of the track sidecar-byterange elements in the array shall be ordered in increasing
startRange Values.

- position is defined in clause 0.

DASH-IF

17 DASH-IF CTS 00XX V0.9.0 (2023-02)

NOTE: The first byterange of a track contains the initialisation segment. When segments are delivered with
byteranges, it is not possible to differentiate the request for this part of the file from a request for a media
segment when using a pattern as described in clause 5.3.5. The initialisation segment is not watermarked,
therefore position equal -1 for this segment.

The following is an example of a file with an initialisation segment part of the byterange from 0 to 1117 and two
segments.

Sidecar (
/version/ 1,
/fileSize/ 262445216,
/segments/ [{/startRange/ 0, /position/ -1},
{/startRange/ 1118, /position/ 0},
{/startRange/ 1701212, /position/ 1},

{/startRange/ 261083393, /position/ 118},
{/startRange/ 262073936, /position/ 119}]
)

55.3.3 HTTP Header

When content is pushed, in the request header, under the wMPaceInfoIngest HTTP header field, the following JSON
object is added:

WMPaceInfoIngest : {

"version": version,
"variant": variant,
"position": ©position,
"firstpart": firstpart,
"lastpart": lastpart

}

Where
version is setto 1 for wMPaceInfoIngest compliant to this document.
variant, position, firstpart and lastpart are defined in clause 5.5.2.

When content is pulled, in the response header, under the WwMPaceInfoEgress HTTP header field;.the following
CBOR object, base64url-encoded as described in clause 5 of [7], is added:

WMPaceInfoEgress : <sidecar-discrete>

Where

- sidecar-discrete is defined in clause 5.5.3.2 and contains exactly one discrete-segment object with
data for that segment.

Below is an example of the JSON element added in a wMPaceInfoIngest-header field where the payload of the HTTP
request contains the full segment of Variant A.

{

"version": 1,
"variant": O,
"position": 33,
"firstpart": true,
"lastpart": true
}
5534 ISOBMFF Box

The format of wMPaceInfo class shall be

class WMPaceInfo {
unsigned int(8) version;
unsigned int(8) wvariant;
unsigned int(l) emulation 1;

DASH-IF

18 DASH-IF CTS 00XX V0.9.0 (2023-02)

unsigned int
unsigned int

(15) position;
(1
unsigned int (1
(1
(5

5

) emulation 2;

) firstpart;
unsigned int (1)
unsigned int (5)

lastpart;
reserved;

Where
- version issetto 1 for wMPaceInfo compliant to this document.
- variant, position, firstpart and lastpart are defined in clause 0.
- emulation 1,and emulation 2 are setto 1.
Within an ISOMBFF file, the wMpPaceInfo class shall be carried in the following box:

Box Type: ‘wmpi”’
Container: Top level box
Mandatory: No

Quantity: Zero or one
aligned (8) class WMPaceInfoBox extends Box (‘wmpi’)
{

WMPaceInfo ()

}
This box should be inserted only at the beginning of a segment, after the st yp box and before the moof box, in order to
facilitate content manipulation when padding it (see clause 5.7.5.10).

5535 SEI Message

SEI messages are inserted in the stream with a specific syntax depending on the codec. [8] provides the syntax for
AVC, HEVC and AV1 video codecs in Annex B. In these messages:

- The UUID shall be equal to 0xbec4£824-170d-47cf-a826-ce008083e355

- The watermarking metadata is the WMPace Info data with the format defined for the class WMPaceInfo ()
in clause 5.5.3.4.

This message should be inserted for the first frame of a segment to facilitate content manipulation when padding it (see
clause 5.7.5.1).

5.5.3.6 TS Adaptation Field

Following clause U of [2], the format of the private adaptation field descriptor carrying the wMpaceInfo data is defined
in Table 4

Table 4: WMPacelnfo descriptor.

Syntax No. of bits [Mnemonic
temi WMPacelInfo descriptor ({
af descr tag 8 uimsbf
af descr length 8 uimsbf
WMPaceInfo () 40 uimsbf
}

Where
- af _descr tagisan 8-bit field that identifies this AF descriptor. It is equal to OXDF.

- af _descr length isan 8-bit field specifying the number of bytes of the AF descriptor immediately
following af descr length field.

- WMPaceInfo () is a 40-bit field that carries the information defined for the class wMPaceInfo () in clause
5.5.3.4.

This message should be inserted for the first frame of a segment to facilitate content manipulation when padding it (see
clause 5.7.5.1).

DASH-IF

19 DASH-IF CTS 00XX V0.9.0 (2023-02)

5.6 Content Preparation
5.6.1 Introduction

Content preparation means the generation of A/B Variants of the segments followed by the push of content on the
origin. It is under a workflow manager responsibility in case of VOD and fully automated for Live content. The encoder
generates the different Variants of the adaptive content. The encrypted segments, the DASH manifest and HLS playlists
are generated by the packager and pushed to the origin. A simplified flow is shown in Figure 5 for the case of Live
content if the DASH-IF ingest protocol is used [i.1] (note that content protection steps are omitted for clarity). For
encrypted content, Variants of every segment part of the same Representation may be encrypted using the same
encryption method and with the same content key, meaning the same DRM license allows decrypting the A and B
Variants. In addition to the Variants, the encoder also pushes wMPaceInfo that contain information allowing the
packager and the origin to properly associate the pieces of Variants that are pushed to a bit position on the WM pattern.
In such flow, the packager can aggregate multiple ingest segments into one egress segment, with the limitation that only
ingest segments carrying the same position value can be aggregated together.

Encoder Packager Origin

Ingest manifest N
P

Ingest segments Variant A
[w/ WMPacelnfo) |
¥

Ingest segments Variant B
(w/ WMPacelnfo) N
L4

Egress manifest Y
.4

Egress segments Variant A
(w/ WMPacelnfo) 9
Ld

Egress segments Variant B
(w/ WMPacelnfo) N
L

Encoder Packager Origin

Figure 5. Example of Live DASH content preparation workflow using the DASH-IF ingest protocol.

5.6.2 Encoding Recommendations

This clause contains recommendation when encoding content. The goal is to facilitate.the creation and management of
A and B Variants in the delivery chain.

When segments are requested as byteranges in a file or when chunks are requested as byteranges in a segment, the
segments and chunks in A and B Variants shall have the same size as the player receives only one DASH manifest or
HLS playlist and will get byterange lengths from one sidx box only. How this is achieved in out of the scope of this
document (as an example, bit stuffing in the encoder is an option).

NOTE: This solution does not allow creating aligned segment when content is delivered with HLS in the form of
MPEG-2 TS segments encrypted with AES sample encryption, because start code emulation prevention
must be re-applied over the entire NAL unit after encryption with MPEG-2 TS.

NOTE: An alternative solution is either to not use segments requested as byteranges, but to use discrete files (in
these cases, there is no need to align Variant A and B of the same segment) or use CMAF segments with
HLS where start code emulation prevention is not re-applied after encryption.
5.6.3 Delivering Content and WMPacelnfo from the Encoder to the
Packager

Only one option for conveying wMPaceInfo information from the encoder to the origin shall be used. Multiple
concurrent formats are not allowed.

NOTE: WhenWwMPaceInfo isdelivered in TS adaptation field, ISOBMFF box, or SEI, it adds overhead in the
delivery from the CDN to devices. The sidecar file and HTTP header delivery methods do not.

DASH-IF

20 DASH-IF CTS 00XX V0.9.0 (2023-02)

The encoder is sending part of segments to the packager, as the output of the encoder is not necessarily aligned on the
segment length. Furthermore, when multiple streaming formats are used, it may happen that segments generated by the
packager are not of the same size for every streaming protocol (for example, 2 seconds segments for DASH and 4
seconds segments for HLS). The encoder then needs a mechanism for announcing which parts of the Variants it sends
can be aggregated in segments. This is achieved by using the firstpart and lastpart within wMPaceInfo.

NOTE: Where an encoder delivers additional metadata to instruct the packager how to aggregate the content into
segments, the encoder must ensure that metadata and firstpart and lastpart fields are consistent.

For example, the encoder could output the series of content elements of 1 second length with wMpaceInfo as shown in
Figure 6.

4 seconds

1 second
| | | | | | | Iy,
firstpart:0 firstpart:1 firstpart:0 firstpart:0 firstpart:0 firstpart:1 firstpart:0

lastpart:1 lastpart:0 lastpart:0 lastpart:0 lastpart:1 lastpart:0 lastpart:0
position:2 position:3 position:3 position:3 position:3 position:4 position:4

Figure 6: Example of output of an encoder.

If the encoder pushes over HTTP these elements, each one should carry a wMpPaceInfoIngest HTTP header with the
relevant data. Every server keeps the information within the header associated to the ingested segment. In some cases,
for example when the origin does additional packaging, the header may be updated. The packager can then prepare
segments according to the streaming protocol. From the example above, it can create segments of 2 or 4 seconds
keeping the consistency of the watermarking.

NOTE: In this case, 2 consecutive segments of 2 seconds carry the same position value, hence a larger piece of
content is required to retrieve an identifier compared to the case where 2 consecutives segments carrying
different position values.

Other options are to carry wMPaceInfo in a sidecar file or SEI or ISOBMFF box or TS adaptation field. For.cases
where the origin can perform additional manipulation of the content, wMpaceInfo may be carried within the content
instead providing it is overwritten as specified in 0.

5.6.4 Segment Ingress Path Structure on the Origin
5.6.4.1 Introduction

The DASH manifest [1] and HLS playlist [3] served to the devices are “neutral”, meaning that
- The same playlist or manifest is served to all devices of all end-users.
- It does not expose different names for A and B Variants of a given segment.

Where the combination of packager and origin is able to perform additional re-packaging (e.g., interface 1 of [i.1]), the
structure of ingest and egress may differ.

Where the combination of packager and origin does not perform additional re-packaging (e.g., interface 2 of [i.1]), the
structure of ingest and egress may be the same.

Nevertheless, the segments served to the devices need to be either an A or a B Variant, depending on the WM token
information. Therefore, the media segments path at the CDN edge and at the origin can be different.

5.6.4.2 Locating the Variants

Egress DASH manifests and HLS playlists shall be neutral, but ingest DASH manifests and HLS playlists include
information about the A and B Variants being ingested, this is

- The ingest path

- Some signalling elements to describe if a DASH Adaptation Set includes the A or B Variants, or if an HLS
media playlist includes A or B Variants.

The ingest of A and B Variants shall use specific ingest paths that include a Variant identification (s {variant1d}).

DASH Ingest manifests shall include an AdaptationSet per Variant. The contents of the AdaptationsSet shall be
identical for every Variant apart from an EssentialProperty element that indicates the variant1d and that the

DASH-IF

21 DASH-IF CTS 00XX V0.9.0 (2023-02)

Variants are grouped (i.e., they reference the same media). It has the @schemeIduri attribute equal to
http://dashif.org/guidelines/watermarking variant#${variantId} where ${variantId} identifies
the Variant with which this EssentialProperty element is associated and @value attribute identifies the group to
which the Variant belongs. If there are additional Variants (A, B and C for example), the @schemeIduri attribute is
different for each Variant, for example, for Variant C, @schemeIduri attribute shall be equal to
http://dashif.org/guidelines/watermarking variant#c, if the schema with lower case letters is used.

The following is an example of a DASH ingest manifest with two Variants, A and B. The watermarking signalling is
highlighted in bold. EssentialProperty elements indicate that Variant A and Variant B belong to the same group
("tvl"™). In this example, lower case letters are used for variantId.

NOTE: Segment file naming with template based on segment $number or $time are possible.

<AdaptationSet mimeType="video/mp4" segmentAlignment="true" startWithSAp="1"
subsegmentAlignment="true" subsegmentStartsWithSAP="1"
bitstreamSwitching="true">
<EssentialProperty
schemeIdUri="http://dashif.org/guidelines/watermarking variant#a"
value="tv1l"/>
<SegmentTemplate timescale="60000"
media="a/video segment S$RepresentationID$ $Time$.mp4"
initialization="a/video init SRepresentationID$.mp4" startNumber="10967120"
presentationTimeOffset="903486496960">
<SegmentTimeline>
<S t="903487696960" d="240000"/>
<S t="903487936960" d="186000"/>
</SegmentTimeline>
</SegmentTemplate>
<Representation i1id="27" width="1920" height="1080" frameRate="30/1"
bandwidth="5000000" codecs="avcl.4D4028"/>
<Representation id="24" width="1280" height="720" frameRate="30/1"
bandwidth="3000000" codecs="avcl.4D401F"/>
<Representation i1d="26" width="640" height="360" frameRate="30/1"
bandwidth="1499968" codecs="avcl.4D401E"/>
</AdaptationSet>
<AdaptationSet mimeType="video/mp4" segmentAlignment="true" startWithSAP="1"
subsegmentAlignment="true" subsegmentStartsWithSAP="1"
bitstreamSwitching="true">
<EssentialProperty
schemeIdUri="http://dashif.org/guidelines/watermarking variant#b"
value="tvl"/>
<SegmentTemplate timescale="60000"
media="b/video segment S$RepresentationID$ STime$.mp4"
initialization="b/video init SRepresentationID$.mp4!". startNumber="10967120"
presentationTimeOffset="903486496960">
<SegmentTimeline>
<S t="903487696960" d="240000"/>
<S t="903487936960" d="186000"/>
</SegmentTimeline>
</SegmentTemplate>
<Representation id="27" width="1920" height="1080" frameRate="30/1"
bandwidth="5000000" codecs="avcl.4D4028"/>
<Representation 1d="24" width="1280" height="720" frameRate="30/1"
bandwidth="3000000" codecs="avcl.4D401F"/>
<Representation id="26" width="640" height="360" frameRate="30/1"
bandwidth="1499968" codecs="avcl.4D401E"/>
</AdaptationSet>

For HLS ingest playlists, the master playlist shall include all the A and B Variants with a custom attribute specifying the
Variant (using $ {variantId} identification as defined in clause 5.30). The attribute iS WATERMARKING-VARIANT. A
combination of both audio and video watermarking can therefore be used in a single streamset. In the media playlists,
the only specific signalling is the segments paths that reflects on which ingest path the Variants are ingested. The sub-
paths in the media playlists shall use the same convention that the $ {variant1d}.

DASH-IF

22 DASH-IF CTS 00XX V0.9.0 (2023-02)

The following is an example of HLS ingest playlists, the watermarking signalling is highlighted in bold (this theoretical
example, both the video and audio are watermarked). In this example, lower case letters are used for variantId.

Master playlist

#EXTM3U

#EXT-X-VERSION: 4

#EXT-X-INDEPENDENT-SEGMENTS

#EXT-X-STREAM-INF:BANDWIDTH=5227200, AVERAGE -
BANDWIDTH=3511200,CODECS="avcl.4d401f,mp4a.40.2",RESOLUTION=1280x720, FRAME-
RATE=30.000,AUDIO="program audio", WATERMARKING-VARIANT="a"

video 1.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=2719200, AVERAGE -
BANDWIDTH=1861200,CODECS="avcl.77.30,mp4a.40.2",RESOLUTION=640x360, FRAME-
RATE=30.000,AUDIO="program audio", WATERMARKING-VARIANT="a"

video 2.m3u8

#EXT-X-STREAM-INF :BANDWIDTH=8571200, AVERAGE-
BANDWIDTH=5711200,CODECS="avcl.4d4028,mp4a.40.2",RESOLUTION=1920x1080, FRAME—-
RATE=30.000,AUDIO="program audio", WATERMARKING-VARIANT="a"

video 3.m3u8

#EXT-X-STREAM-INF :BANDWIDTH=5227200, AVERAGE-

BANDWIDTH=3511200, CODECS="avcl.4d401f, mp4a.40.2",RESOLUTION=1280x720, FRAME-
RATE=30.000,AUDIO="program audio", WATERMARKING-VARIANT="b"

video 4.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=2719200, AVERAGE -

BANDWIDTH=1861200, CODECS="avcl.77.30,mp4a.40.2",RESOLUTION=640x360, FRAME-
RATE=30.000,AUDIO="program audio", WATERMARKING-VARIANT="b"

video 5.m3u8

#EXT-X-STREAM-INF :BANDWIDTH=8571200, AVERAGE -
BANDWIDTH=5711200,CODECS="avcl.4d4028,mp4a.40.2",RESOLUTION=1920x1080, FRAME—
RATE=30.000,AUDIO="program audio", WATERMARKING-VARIANT="b"

video 6.m3u8

#EXT-X-IMAGE-STREAM-INF :BANDWIDTH=55649, AVERAGE-

BANDWIDTH=23579, RESOLUTION=308x174, CODECS="jpeg",URI="trickplay 7.m3u8"
#EXT-X-MEDIA:TYPE=AUDIO, LANGUAGE="eng",NAME="Stadium

ambiance", AUTOSELECT=YES, DEFAULT=YES, GROUP-

ID="program audio",URI="audio 8.m3u8", WATERMARKING-VARIANT="a"
#EXT-X-MEDIA:TYPE=AUDIO, LANGUAGE="eng", NAME="Stadium

ambiance", AUTOSELECT=YES, DEFAULT=YES, GROUP-

ID="program audio",URI="audioc 9.m3u8", WATERMARKING-VARIANT="b"

NOTE: Whileitis a legal signaling in HLS to have multiple ExT-x-MEDIA tags with the same GROUP 1D value,
each tag shall have a different NaME value. As these playlists are'not for devices to consume and to
minimize the processing on the playlists, the ingest playlists do not-follow this rule and multiple ExT-x-
MEDTIA share the same NAME value.

Media playlist (A Variant)

#EXTM3U

#EXT-X-VERSION: 6
#EXT-X-INDEPENDENT-SEGMENTS
#EXT-X-TARGETDURATION: 6
#EXT-X-MEDIA-SEQUENCE:11352692
#EXT-X-MAP:URI="video init 1.mp4"
#EXT-X-PROGRAM-DATE-TIME:2021-09-15T00:48:38.9337%
#EXTINF:6.000,

a/video segment 1 11352692.mp4
#EXTINF:6.000,

a/video segment 1 11352693 .mp4
#EXTINF:6.000),
a/video_segment 1 11352694 .mp4
#EXTINF:6.000,

a/video segment 1 11352695.mp4
#EXTINF:6.000,

DASH-IF

23 DASH-IF CTS 00XX V0.9.0 (2023-02)

a/video _segment 1 11352696.mp4
Media playlist (B Variant)

#EXTM3U

#EXT-X-VERSION: 6
#EXT-X-INDEPENDENT-SEGMENTS
#EXT-X-TARGETDURATION: 6
#EXT-X-MEDIA-SEQUENCE:11352692
#EXT-X-MAP:URI="video init 1.mp4"
#EXT-X-PROGRAM-DATE-TIME:2021-09-15T00:48:38.9337%
#EXTINF:6.000,

b/video segment 1 11352692 .mp4
#EXTINF:6.000,

b/video segment 1 11352693.mp4
#EXTINF:6.000,

b/video segment 1 11352694 .mp4
#EXTINF:6.000),

b/video segment 1 11352695.mp4
#EXTINF:6.000,

b/video _segment 1 11352696.mp4

When the ingested content is not watermarked anymore, then

- For DASH content, the EssentialProperty elements shall be removed from the ingest manifest and a new
Period shall be created with a single AdaptationsSet. The path to the segments shall be updated, removing
any information on the Variant location (in the example above, the a/ shall be removed from the @media
value of the SegmentTemplate element).

- For HLS content, the encoder shall create a new master playlist that does not include WATERMARKING-
VARTANT attributes. It also stops delivering the additional media playlists for the B Variant and others if
present. The path to the segments in the media playlist delivered to devices shall be updated, removing‘any
information on the Variant location (in the example above, the a/ shall be removed from the media playlist).

NOTE: Stopping watermarking content is different from toggling edge sequencing logic (see clause 5.3).

5.6.4.3 Locating the Sidecar File

The sidecar file is part of the ingest with the DASH manifest or HLS playlist, the link to this file'is added in different
places depending on the format.

DASH ingest manifests shall include an EssentialProperty element at the Representation level with a
@schemeIdUri attribute equal to http://dashif.org/guidelines/watermarking: wmpaceinfo and @value
attribute equal to the pointer to the sidecar file. The pointer is relative to the ingest manifest.

The following is an example of a DASH ingest manifest where the watermarking signalling is highlighted in bold. In
this example, the absolute path for the sidecar file for the first representation is equal to
https://dash.edgesuite.net/dash264/TestCases/1a/ElephantsDream_H264BPL30_0100.264.dash_wm_pace_info.

NOTE: This example also includes the signalling defined in clause 0 (for one Variant A). In this case, the
EssentialProperty elements are added in the Representation.

<?xml version="1.0" encoding="UTF-8"7?>

<MPD xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="urn:mpeg:dash:schema:mpd:2011"
xsi:schemalLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"
type="static"
mediaPresentationDuration="PT654S"
minBufferTime="PT4S"

<AdaptationSet mimeType="video/mp4" codecs="avcl.42401E"
subsegmentAlignment="true" subsegmentStartsWithSAP="1" contentType='video'
maxWidth="480" maxHeight="360" maxFrameRate="24" par="4:3">
<Representation id="2" bandwidth="150000" width="480" height="360"
frameRate="24">

DASH-IF

24 DASH-IF CTS 00XX V0.9.0 (2023-02)

<EssentialProperty
schemeIdUri="http://dashif.org/guidelines/watermarking variant#a"
value="tv1l"/>
<EssentialProperty
schemeIdUri="http://dashif.org/guidelines/watermarking wmpaceinfo"
value="ElephantsDream H264BPL30_0100.264.dash wm pace_info"/>
<BaseURL>a/ElephantsDream H264BPL30 0100.264.dash</BaseURL>
<SegmentBase indexRange="984-11244">
<Initialization range="0-983"/>
</SegmentBase>
</Representation>
<Representation id="3" bandwidth="250000" width="480" height="360"
frameRate="24">
<EssentialProperty
schemeIdUri="http://dashif.org/guidelines/watermarking variant#a"
value="tvl"/>
<EssentialProperty
schemeIdUri="https://dashif.org/guidelines/watermarking wmpaceinfo"
value="E1ephantsDream_ﬂ264BPL30_0175.264.dash_wm_pace_info"/>
<BaseURL>a/ElephantsDream H264BPL30 0175.264.dash</BaseURL>
<SegmentBase indexRange="984-11245">
<Initialization range="0-983"/>
</SegmentBase>
</Representation>

</AdaptationSet>
</MPD>

HLS ingest playlists shall include in the media playlist a custom tag specifying the pointer to the sidecar file. The
pointer is relative to the ingest manifest. The tag iS #EXT-X-WMPACEINFO:<attribute-1ist> where the defined
attribute is URT, a quoted-string that gives the relative pointer to the sidecar file. In the media playlist for each Variant
(A, B, C ...), the sidecar file referenced by the #EXT-X-WMPACEINFO tag is the same as the variant valueshall'not be
considered.

The following is an example of a HLS media playlist, the watermarking signalling is highlighted in.bold. Note that the
master playlist remains unmodified.

#EXTM3U

#EXT-X-TARGETDURATION: 8
#EXT-X-VERSION:7
#EXT-X-MEDIA-SEQUENCE: 1
#EXT-X-PLAYLIST-TYPE:VOD
#EXT-X-INDEPENDENT-SEGMENTS
#EXT-X-WMPACEINFO:URI="main_wm pace_info"
#EXT-X-MAP:URI="main.mp4",BYTERANGE="1118@0"
#EXTINF:7.98333,
#EXT-X-BYTERANGE:1700094@1118
a/main.mp4

#EXTINF:8.00000,
#EXT-X-BYTERANGE:1789481@1701212
a/main.mp4

#EXTINF:8.00000,
#EXT-X-BYTERANGE:1777588@3490693
a/main.mp4

#EXTINF:8.00000),
#EXT-X-BYTERANGE:1752144@5268281
a/main.mp4

#EXTINF:7.26667,
#EXT-X-BYTERANGE:1563219@7020425
a/main.mp4

DASH-IF

25 DASH-IF CTS 00XX V0.9.0 (2023-02)

5.6.5 Packaging Recommendations

This clause contains requirements where packaged content is served to devices. The goal is to facilitate the creation and
management of A and B Variants in the delivery chain. These requirements apply even if no re-packaging process
exists.

NOTE: This implies that an encoder working against a completely passive receiver (e.g. interface 2 of [i.1]) must
publish egress versions of the content directly.

The minimum segment duration should consider the embedding capabilities of the WM technology in order to ensure
that a segment contains only information for A or B Variant. A segment carrying only one bit of information (Variant A
or B) allows to match a segment to a bit value in the WM pattern.

As described in 0, a re-packaging process may aggregate received parts of content. It builds a segment beginning with
the part of content with firstpart=true and then aggregates until 1astpart for creating a segment until the targeted
length has been reached. It shall begin creating a new segment if a part of content with firstpart=true is received
before reaching the targeted length. The packager shall not aggregate segments that have inconsistent metadata, more
precisely, only ingest segments carrying the same position value shall be aggregated together.

The transformation of ingest manifest into egress manifests requires the following actions:

- All watermarking wmpaceinfo and watermarking variant EssentialProperty elements in DASH
manifests and EXT-x-WMPACEINFO tags in HLS playlists shall be removed from the egress manifests.

- A and B HLS media playlists of a given rendition in HLS shall be merged into a single, neutral version of it
(without $ {variantPath}).

- DASH manifests shall be made neutral (without $ {variantPath}).
Additionally, when translating from ingress to egress, a re-packaging process shall:

- overwrite wMpaceInfo When carried as SEI messages, TS adaptation fields or ISOBMFF boxes. Overwriting
shall prevent start code emulation. It is recommended to overwrite with 0xFF.

- remove firstpart, lastpart, segmentRegex from sidecar-discrete elements.

5.7 Content Playback
5.7.1 Introduction

The flow for content playback is shown in the following clauses. The origin received content.as explained in clause 5.5.
It has access to the A/B Variants and the wMpPaceInfo data.

This clause describes only the case where the WM token is used in direct mode and.does not consider the value of
wmsegduration (hence using WMPaceInfo).

This clause is also not considering the case of download of content for later offline playback. Usually, content available
for download is available in the form of byteranges and the device requests large byteranges that overlap those
announced in the MPD or HLS playlists. When content is watermarked, this'is not possible as only announced
byteranges are addressable (see clause 0). The device shall therefore either use the announced byteranges only or a
proxy shall ensure that the edge receives requests that are for announced byteranges.

Content playback is divided in three actions:
- Acquiring the WM token, the DASH manifest, or the HLS playlists
- Acquiring the initialisation segment
- Acquiring media segments

While the first action is common to all type of content, the other ones have variations depending on the packaging and
delivery mode of the content. Variation is, for example on the difference between content delivered as byterange or
discrete segments. Another possible variation appears when HLS low latency is used for the chunks requested at the
edge of live.

The following goes through the different actions by providing the expected workflows.

DASH-IF

26 DASH-IF CTS 00XX V0.9.0 (2023-02)

5.7.2 Dynamic Ad Insertion

In case of Dynamic Ad Insertion (DAI), the break may happen at any time. As every segment carries watermarking
information allowing to perform the detection, there shall not be segments carrying conflicting data. While some
techniques may recover from this mix of data, it will, in all cases, impact the length of content needed for retrieving the
unique identifier.

For Live content, assuming that an ad replacement period is defined, then from the device perspective, the following
consumption modes are possible.

- The device consumes ads from an alternative edge for the full duration of the ad break
- The device consumes ads from an alternative edge for a duration shorter than the replacement period
- The device consumes the original content as no replacement ad is proposed

Devices may therefore consume content differently during the ad break.

For VOD content, ads will be inserted or stitched with ad break (cue in/out points for example) markers. The device
should consume them from an alternative edge for the full duration of the ad break.

The encoder shall watermark ads part of the original content for Live content. The watermarking technology shall
remain consistent between all these options. Some devices may receive the original content if no ad can be found for
replacement. One consequence is that these devices receive content that is meant to be watermarked following the rules
of this document.

Devices receiving an ad for replacement shall receive it from a different edge that does not enforce watermarking. Such
edge will then gracefully ignore the WM token.

The WM token is expected to be present in all playback requests during the session. In presence of a DAI manifest
manipulator, depending on its behaviour, it may be necessary to tweak the configuration of the delivery pipeline to
guarantee the propagation of the WM token. For instance, it may be required to perform some manifest manipulation at
the edge to re-introduce the WM token in the response, e.g., when the token is transported as a query parameter and.the
DAI manifest manipulator is not piggybacking incoming query parameters in the rewritten manifest/playlist. Another
case is when the watermark token is incorporated to the virtual path, stripped at the edge on its way to the DAl manifest
manipulator (that remains therefore unaware of the WM token) which returns a manipulated playlist that contains
absolute URLSs.

5.7.3 WM Token, DASH Manifest and HLS Playlists Acquisition

The device acquires the WM token in an implementation specific manner. It may be retrieved directly from a WM
token server, or it may be provided in a response from another server as part of other data-required for playing back
content.

The WM token may be added as part of the virtual path of the requested object, as.a query string attribute or as part of
the HTTP header when the device requests content to the edge. It is recommended to use the virtual path.

The WM token may be added by the device for requesting DASH manifest and HLS playlists. While these objects are
not watermarked (the pattern in the name allows the edge to know this), the edge may validate or not the token and
refuse to serve these objects if the token is not valid. The edge may also gracefully ignore the token. The origin cleans
the served objects, removing any property related to location of objects (see clause 5.6.5). The manifest and playlist are
neutral. This is summarized in Figure 7.

DASH-IF

27 DASH-IF CTS 00XX V0.9.0 (2023-02)

Origin CDN Edge Device
I
opt J[WM token acquisition]
I
‘ Implementation specific LW
alt J[Obtaln DASH manifest]
4 Get MPD(WM token)
Al
OE‘ |[Manlfe5t cache miss]
4 Get MPD
Al

Create a neutral MDP @

MPD
»

e | PR

[Obtain HLS playlists]

4 Get master/media playlist(WM token)

OEt l[M aster/media playlist cache miss]

4 Get master/media playlist
Al

Create neutral master/media playlist @

master'media playlist _’

Cache master/media playlist ;

Master/media playlist "'

Origin CDN Edge Device

Figure 7: Token, DASH manifest and HLS playlist acquisition.

5.7.4 Initialisation Segment Acquisition

When content is delivered as byteranges, as the initialisation segment is within-the file, the token shall be added in the
request as the requested file has a name that matches the pattern for watermarked content. The edge will then apply the
exact same logic it applies for a media segment, it retrieves the sidecar file and extracts the wMpaceInfo for the first
part of the track that contains the initialisation segment (as defined in clause 5.7.5). It can then deliver the initialisation
segment to the device. As position isequal to -1 (not watermarked), it shall deliver the initialisation segment from
Variant A. One or several Variants may become unavailable on the origin for any reason, such as a lost connection with
the encoder for these encoding pipelines. Such situation will result in a failed playback if Variant A is the one that is not
available. The origin shall deliver to the edge the initialisation segment from any available Variant in this case on the
endpoint for Variant A.

NOTE: The token is evaluated and validated as the edge cannot make a difference between the initialisation
segment and a media segment.

When content is delivered as discrete segments, the name of the initialisation segment shall not match the pattern for
watermarked content as written in clause 5.3. The WM token may be added by the device for requesting the
initialisation segment. The edge may validate it or not and may refuse to serve these objects if it is not valid. The edge
may also gracefully ignore it.

DASH-IF

28 DASH-IF CTS 00XX V0.9.0 (2023-02)

5.7.5 Media Segments and WMPacelnfo Acquisition

5.75.1 General Requirements

For the media segments, a token shall be attached to the HTTP requests. If not present, the edge shall reject the request
and shall not deliver the segment. The edge shall validate the WM token (that can include checking signed data or
decrypting some claims) which is attached to the requests and extracts the WM pattern so that the correct Variant can be
sequenced.

Watermarked objects shall include in the sub-path in the edge forward requests to the origin the value of identifying
Variants that is part of the configuration described in clause 0. A request received at the CDN edge for
https://edge.hostname/path/to/endpoint/video_segment_5 8353305.mp4 shall be translated into a forward request for
https://origin.hostname/path/to/endpoint/s {variantPath}video_segment_5_8353305.mp4 where the value of
${variantPath} depends on the value extracted from the WM pattern for this segment. The same logic applies if the
watermarking is done through audio segments.

The connection between the origin and the edge shall be restricted to legitimate requests. How this is achieved is out of
the scope of this document.

NOTE: A static secret (a shared key), dynamic signatures or access lists (based on IP addresses) are examples of
tools for restricting the access.

There may be the need to disable watermarking within or upstream of the packager at any time, for example, one or
several Variants may become unavailable on the origin for any reason, such as a lost connection with the encoder for
these encoding pipelines. As devices request all Variants, this situation will result in intermittent black screens when
requesting the affected Variants. In such case, position shall be set to -1 in wMpaceInfo, effectively announcing to
the edge sequencing logic that segments are not watermarked. The edge shall then consume segment on the endpoint for
Variant A. If this endpoint is not working properly, the origin shall deliver any available Variant on this endpoint.

NOTE: This is breaking the watermarking detection. The period when such contingency measure is applied is not
to be used for detection. How the end-to-end system is synchronized is out of the scope of this document.
As an example, the origin can raise an alarm.

5.75.2 WMPacelnfo Acquisition

For each device request for /pathname/filename, the edge shall retrieve from the origin egress WwMPaceInfo data
associated to this object. The origin presents this information differently whether segments are discrete.or byteranges:

- For byterange segment, the origin shall have a dedicated endpoint for delivering wMpaceInfo information as a
sidecar file. For a segment requested by a device at /pathname/filename, the originshall have an endpoint
/pathname/WMPaceInfo/filename that makes the sidecar file available. The response payload shall
contain the sidecar file (as defined in clause 0 for byterange segments). The.origin'shall not extract data and
only provide the sidecar file to the edge. The Content-Type for this object iS'application/cbor.

- For discrete segment, the origin

- Shall have a dedicated endpoint /pathname/WMPaceInfo/filename for delivering wMpaceInfo for
the requested segment. The response payload shall contain a sidecar file that contain a single
WMPaceInfo object. The Content-Type for this object is application/cbor.

- Shall add wMpaceInfo in the response header (as defined in clause 0) under the wMPaceInfoEgress
header field when the edge requests the segment.

- It is the edge that defines which endpoint it uses.

If WMPacelnfo was delivered to the origin in ingress form (as part of the HTTP request headers, SEI message,
ISOBMFF box, TS adaptation field or a sidecar file per track), that data shall be extracted and made available in egress
form to the edge as both a HTTP header and dedicated endpoint.

Any direct request from a device with /pathname/WMPaceInfo/filename shall receive an error code 403.

Table 5 gives examples of content flows as ingest to the origin and egress of the origin to the edge.

DASH-IF

29

DASH-IF CTS 00XX V0.9.0 (2023-02)

Table 5: Examples of content flows.

Live content

VOD content

No sidecar file, data is delivered as part of HTTP
headers, SEI messages, ISOBMFF boxes or TS
adaptation field.

Ingest of the origin

For both discrete segments and byteranges, one
sidecar file per track.

One sidecar file per segment (note the special case
of HLS low latency with byterange where multiple
chunks are be linked to the same sidecar file, see
clause 5.7.5.4) and HTTP header.

Egress of the origin

For discrete segments, one sidecar file per segment
and HTTP header.
For byterange, one sidecar file per track.

There are then three endpoints on the origin:
- WMPaceInfo: /pathname/WMPacelnfo/filename
- Variant A: /pathname/$ {variantPath}filename
- Variant B: /pathname/s { variantpath}filename
Where ${variantPath} is as defined in clause 5.3.

NOTE:
5.7.5.3

Adding Variants creates additional endpoints.

Discrete Files

For the media segments delivered as discrete files, the flow is shown in Figure 8. The edge sequences the A or B
Variant of a segment based on the WM pattern contained in the token. It has two options to know the position of the

segment within the WM pattern:

- First make a request to the origin to retrieve the wMpaceInfo data. This is done with a GET request using the
path /pathname/WMPaceInfo/filename. The origin provides the wMpaceInfo from the Variant A in the

payload of the response as a sidecar file.

- Once, the data in wMPaceInfo is interpreted in conjunction with the WM pattern, the edge can request to the
origin the right Variant corresponding to the position in the WM pattern that matches the value of position

in WMPaceInfo and then deliver it to the device.

- Make a request for the A and B Variants, extract the wMpaceInfo from one response header-and once, the
data in wMpPaceInfo is interpreted in conjunction with the WM pattern, the edge can deliver the right Variant

to the device.
NOTE:

There is a high probability that the edge will request both A and B Variants, hence adding wMPaceInfo

to the response header allows avoiding an extra request to the origin.

The edge caches the Variants of a given segment with different cache keys and it should prevent the cache keys to be

revealed through debug headers.

DASH-IF

30 DASH-IF CTS 00XX V0.9.0 (2023-02)

Origin CDN Edge Device
|

loo [Segment request for playback]

4 GET /pathname/segment_i{WM token)
Validate WM token ;

______________ 401Unathorzed)|

alt J0invalid WM token]

[Valid WM token]

alt |[U5e the dedicated endpoint for WMPacelnfo]

opt [WMPacelnfo cache miss]
4 GET /pathname/WNMPacelnfo/segment i
Al

‘ Origin retrieves WMPacelnfo for this segment and delivers i[tﬁ

_________________ 200 91(_@_599’15_9_________________}

[Retreive WMPacelnfo from response header]

opt [Variants cache miss]

4 GET /pathname/${variantPath}segment i
Al
u _________________ 000K response.)
Cache response :
4 GET /pathname/${variantPath}segment_i
Al
u _________________ 200K response)
Cache response :

alt [Invalid Request: no WMPacelnfo for this segment]

[Valid Request: WMPacelnfo available for this segment]

Create WMPacelnfoObject from cache :

VAR=getVariant(WM token, WMPacelnfoObject)

alt [If using the dedicated endpoint for WMPacelnfo]

opt [Segment variant cache miss]
d GET /pathname/3{VAR}segment_i
Al
{l 200 OK /pathname/${V AR} segment_i }

Cache /pathname/${VAR}/segment_i :

Play Content :

J
Origin CDN Edge Device

Figure 8: Media segment, as discrete file, acquisition.

DASH-IF

31 DASH-IF CTS 00XX V0.9.0 (2023-02)

5754 Byterange

For the media segments delivered as byteranges, the flow is shown in Figure 9. The edge delivers the A or B Variant of
a segment based on the WM pattern contained in the token. To know which position in the WM pattern it has to
consider, it needs to retrieve the sidecar file associated to this track. It first makes a HTTP GET request to the origin in
order to retrieve the sidecar file.

Whilst sub ranges within segments, such as chunks, are allowed, the edge shall not deliver byteranges overlapping
several segments with different position values in wMPaceInfo.

NOTE: An example is content delivered with HLS using the ExT-x-PART tag are byterange requests within a
discrete segment. When the edge receives the request for this partial segment, it will request wMPAceInfo
to the origin and will receive a sidecar file with only one wMpAceInfo. This allows the edge to know that
it shall not enforce byterange validation for these requests).

NOTE: Only byteranges overlapping valid ranges are problematic, requests for byteranges included in an allowed
range are not breaking the WM pattern that is created by the A/B Variants and thus can be served.

Once the data in wMPaceInfo is interpreted in conjunction with the WM pattern, the edge can deliver the correct
Variant corresponding to the position in the WM pattern that matches the value of position in WMPaceInfo.

DASH-IF

32

DASH-IF CTS 00XX V0.9.0 (2023-02)

Ori

gin

CDN Edge

Device

loop |[Segment request for playback (including init segment)]

4 GET /pathname/filename(WM token. byterange)
bl

Validate WM token

[Valid WM token]

valid WM token]

401 Unauthorized

[WMPacelnfo cache miss]

GET /pathname/WMPacelnfo/filename

opt |
d
hl

Crigin retrieves WMPacelnfo sidecar file for
this file and delivers it
200 OK response

Cache response

[Invalid Request: no WMPacelnfo for this file]

[Valid Request: WMPacelnfo available for this file (one or mal

Create WMPacelnfoObjects list frem cache payload

WMPacelnfoObject=getObject(WMPacelnfoObjects, byterange)

y objects)]

alt

J[Invalld byterange request]

[Valid byterange request]

VAR=getVariant(\WM token, WMPacelnfoObject)

400 Bad Request (Invalid byterange)

opt

[Byterange cache miss]

Get /pathname/$VAR)/filename(byterange)

4
hl

The returned payload may be larger than the requested
byterange (Partial Object Caching)
206 Partial Content

Cache /pathname/$V AR}/ filename(byterange)

opt][Partial Object Caching]

Construct byterange response from locally cached object
/pathname/${v AR}/ filename(byterange)

206 Partial Content

Play Content

n

Ori

gin

CDN Edge

Device

Figure 9: Media segment, as byterange, acquisition.

DASH-IF

33 DASH-IF CTS 00XX V0.9.0 (2023-02)

5.8 Monitoring and Watermark Detection

If content is found, a detection of a WM pattern can be performed. A video acquisition that includes valuable content
(no commercial breaks for example) is performed. As the unique ID is obtained by extracting information from
segments (0 or 1 in every segment), the acquired content must be of several minutes (the longer the segments are, the
longer the acquired video is). The video is then processed by the watermarking provider in order to extract the unique
ID. This ID is then provided to the relevant entity that can match it to a device, user or streaming session and take the
desired actions.

How the detection is performed, and the revocation of the WM token is performed are out of the scope of this
document.

DASH-IF

34 DASH-IF CTS 00XX V0.9.0 (2023-02)

Annex A: (normative)
Vendor Specific Core API

A.l Introduction

In case of a token in indirect mode, it is expected that a vendor specific core (identified by wmvnd) generates the WM
pattern (referred as wmpattern). This means that this requires some interaction between the edge and this vendor
specific core. To facilitate this integration, the following defines the APl made available by the vendor specific core.

A.2 Edge-Vendor Specific API

It is assumed that:
- The call to the API function is blocking and the edge waits for the vendor specific core to end its processing.

- The verification of the token is done before the call to the function. Verification includes the validation of the
signature.

The inputs are the values of the claims of the token that are relevant for the generation of the WM pattern.

const crypto = require('crypto');

function generate wmpattern (token.wmpatlen, token.wmkeyver, token.wmid,
token.wmopid)
{

/* vendor specific processing */

return wmpattern;

}

DASH-IF

35 DASH-IF CTS 00XX V0.9.0 (2023-02)

Annex B: (informative)
Examples of Workflows

B.1 Introduction

This annex takes the DASH-IF ingest protocol [i.1] as a reference. There are two interfaces defined:

- Interface 1, where the combination of packager and origin is able to perform additional re-packaging hence the
structure of ingest and egress may differ. Each POST/PUT contains one CMAF segment. This is often referred
to an active receiving entity as a Just in Time Packager (JITP)

- Interface 2, where the combination of packager and origin does not perform additional re-packaging, the
structure of ingest and egress may be the same. The receiving entity is “passive”, the source produces all
objects in form that devices can consume. Each POST/PUT implicitly refers to one addressable object in an
MPD or playlist.

Therefore, the receiving entity is either active (interface 1) or passive (interface 2) and this leads to the following
possibilities:

- CMAF ingest, active receiving entity (JITP)
- HLS/DASH ingest, active receiving entity (JITP)
- HLS/DASH ingest, passive receiving entity

Given all the options for carrying wMpPaceInfo (See clause 0), the following describes some example flows for Live and
VOD content.

B.2 Live Content Flows

For an active receiving entity (JITP), the grouping is non-trivial (as defined in [i.1] clause 6.2), therefore, as.described
in clause 0, the manifests are sent. The JITP may aggregate ingress segments according to (firstpart, lastpart)
and wMPaceInfoEgress Will reflect the aggregated result. In addition, evidence of WM process (such.as the essential
properties) is removed from egress playlists.

If using the wMPaceInfoIngest header field on interface 1, the flow from the encoder to the edgeis shown in Figure
10.

JITP translates
WMPacelnfolngest to

Store ingest-segment & WMPacelnfoEgress upon
WMPacelnfolngest request from edge
Active
Ingest Source P Receiving < Edge
Entity

PUT/ingest-segment

GET/egress-segment
WMPacelnfolngest: <json>

WMPacelnfoEgress: <cbor>
Figure 10: Flow when using WMPacelnfolngest and WMPacelnfoEgress header fields.

Another possible option is using sidecar file, this leads to the flow shown in Figure 11.

DASH-IF

36 DASH-IF CTS 00XX V0.9.0 (2023-02)

JITP translates
WMPacelnfolngest to sidecar

Store ingest-segment & file upon request from

WMPacelnfolngest edge
Active
Ingest Source > Receiving < Edge
Entity
PUT/ingest—segmenF GET/WMPaceInfo/egress-segment
WMPacelnfolngest: <json> GET/egress-segment

Figure 11: Flow when using WMPacelnfolngest header field and sidecar file.

JITP translates SEIl to
WMPacelnfoEgress upon

Store ingest-segment &
request from edge
SEI 4 g
Active
Ingest Source > Receiving < Edge

Entity

PUT/ingest-segment GET/egress-segment

SEL: WMPacelnfo () WMPacelnfoEgress: <cbor>

Figure 12: Flow when using SEI data and WMPacelnfoEgress header field.

With a passive receiving entity, there is no media manipulation downstream of ingest source, therefore transferring
WMPaceInfo data within the media is not an option, as it is not possible to overwrite it. Figure 13 shows a possible flow

with sidecar files.

Encoder only sends
egress WMPaceInfo in
sidecar file when
pushing to origin

Store egress-segment &

Sidecar file
Passive
Ingest Source > Receiving < Edge
Entity
PUT/egress-segment GET/WMPaceInfo/egress—segment
PUT/WMPaceInfo/egress-segment GET/egress-segment

Figure 13: Flow when using sidecar files.

B.3 VOD Content Flows

If VOD content is prepared using live profile, then the permutations presented in clause O are applicable. In addition,
another option is that a single sidecar can describe all segments using regex for segmentRegex. This latter case leads

to the flow shown in Figure 14.

DASH-IF

For each segment of each r

PUT/segment

Ingest Source

37

Store segments,

DASH-IF CTS 00XX V0.9.0 (2023-02)

sidecars and manifest

After

rpresentation
o Receiving P Edge
d Entity B g

PUT/WMPaceInfo/sidecar

PUT/manifest

GET/egress-segment
GET/WMPacelnfo/sidecar

Figure 14: Flow when using sidecar files for VOD live profile.

If VOD content is prepared using on-demand profile, then the sidecar file is the only mechanism available to deliver
WMPaceInfo data. This leads to the flow shown in Figure 15.

Store trackfiles, overlap several
sidecars and manifest segments with different

For each representation

PUT/trackfile

PUT/WMPaceInfo/trackfile

Ingest Source

Receiving

After
PUT/manifest

Entity

Edge validates that
byteranges do not

position values

V

< Edge

GET/manifest
GET/WMPacelnfo/trackfile
GET/trackfile

Figure 15: Flow when using sidecar files for VOD on-demand profile.

DASH-IF

38

DASH-IF CTS 00XX V0.9.0 (2023-02)

Annex C: (normative)
Registration Requests

C.1 General

This section contains the registration requests for IANA (token claims) and MP4RA (4CC code).

C.2 IANA Considerations

This specification requests IANA to register the following claims in the following registry:

https://www.iana.org/assignments/cwt/cwt.xhtml#claims-registry.
Version Claim

+ Claim Name: wmver

* Claim Description: The version of the WM Token.

JWT Claim Name: wmver

Claim Key: TBD (requested value: 300)

Claim Value Type: unsigned integer

Change Controller: DASH-IF

Specification Document(s): Section 5.4 of this document

e o o o o

Technology Vendor Claim

* Claim Name: wmvnd

« Claim Description: The WM technology vendor.

* JWT Claim Name: wmvnd

* Claim Key: TBD (requested value: 301)

* Claim Value Type: unsigned integer

« Change Controller: DASH-IF

« Specification Document(s): Section 5.4 of this document

Pattern Length Claim

Claim Name: wmpatlen

Claim Description: The length in bits of the WM pattern.
JWT Claim Name: wmpatlen

Claim Key: TBD (requested value: 302)

Claim Value Type: unsigned integer

« Change Controller: DASH-IF

» Specification Document(s): Section 5.4 of this document

Segment Duration Claim

» Claim Name: wmsegduration

» Claim Description: The nominal duration of a segment.

* JWT Claim Name: wmsegduration

» Claim Key: TBD (requested value: 303)

Claim Value Type: map

« Change Controller: DASH-IF

» Specification Document(s): Section 5.4 of this document

Pattern Claim

» Claim Name: wmpattern

» Claim Description: The WM pattern.

JWT Claim Name: wmpattern

» Claim Key: TBD (requested value: 304)

Claim Value Types: COSE_EncryptO or byte string

« Change Controller: DASH-IF

» Specification Document(s): Section 5.4 of this document

ID Claim

DASH-IF

39 DASH-IF CTS 00XX V0.9.0 (2023-02)

+ Claim Name: wmid

» Claim Description: Used as input to derive the WM pattern for indirect mode.
* JWT Claim Name: wmid

» Claim Key: TBD (requested value: 305)

» Claim Value Type: text string

» Change Controller: DASH-IF

» Specification Document(s): Section 5.4 of this document

Operator ID Claim

+ Claim Name: wmopid

« Claim Description: Used as additional input to derive the WM pattern for indirect mode.
* JWT Claim Name: wmopid

« Claim Key: TBD (requested value: 306)

» Claim Value Type: unsigned integer

» Change Controller: DASH-IF

» Specification Document(s): Section 5.4 of this document

Key Version Claim

Claim Name: wmkeyver

Claim Description: The key to use for derivation of the WM pattern in indirect mode.
JWT Claim Name: wmkeyver

Claim Key: TBD (requested value: 307)

* Claim Value Type: unsigned integer

» Change Controller: DASH-IF

» Specification Document(s): Section 5.4 of this document

C.3 MP4RA Registration

This specification requests MP4RA to register the following 4CC code.
1. The name, address, and URL of the organization requesting the code-point.

DASH-IF
3855 SW 153rd Dr., Beaverton, OR 97003, USA
https://dashif.org/

2. The kind of code-point you wish to register (please choose from the set of registered-types).
Boxes (Atoms)

3. For all except object-type registrations, the suggested identifier (four-character code). Note that four-character codes
use four 8-bit printable characters, usually from the first 128 Unicode characters (commonly thought of as plain ASCI|I),
but at most from the first 256 Unicode characters.

wmpi

4. The specification in which this code-point is defined, if possible. A copy of the specification would be appreciated,
as it enables the authority to understand the registration better. If you are requesting a 'codec’ code-point, a reference to
the definition of the coding system itself, if separate from the definition of its storage in these files, would also be
appreciated.

Available from here (https://dashif.org/docs/IOP-Guidelines/DASH-IF-CTS-00XX-AB-Watermarking-
0.9.pdf).

5. A brief 'abstract' of the meaning of the code-point, perhaps ten to twenty words (see examples on this site).

wmpi stands for WaterMarkPacelnfo. It carries A/B forensic watermarking information within the ISOBMFF
file.

6. Contact information for an authorized representative for the code-point, including:
a. Contact person's name, title, and organization.
Thomas Stockhammer

b. Contact email.

DASH-IF

40 DASH-IF CTS 00XX V0.9.0 (2023-02)

tsto@ @qti.qualcomm.com
7. Date of definition or implementation (if known) or intended date (if in future).

To be published by March 31, 2023, as stated here https://dashif.org/guidelines/others/#candidate-technical-
specification-dash-if-forensic-a-b-watermarking

8. Statement of an intention to apply (implement) the assigned code-point.

Expected to be implemented as part of DASH-IF conformance and reference tools according to the boilerplate
in the specification

DASH-IF

41 DASH-IF CTS 00XX V0.9.0 (2023-02)

Annex D: (informative)
Code for Web Sequence Diagram

D.1 Introduction

This Annex provides is the code for generating all workflows shown in figures 6-9 to be used on
https://websequencediagrams.com

D.2 Figure 6

Participant Encoder
Participant Packager
Participant Origin

STEP 1: Ingest from the encoder to the packager

For instance, the segmentation is 1s long

Encoder -> Packager: Ingest manifest

Encoder -> Packager: Ingest segments Variant A\n (w/ WMPaceInfo)
Encoder -> Packager: Ingest segments Variant B\n (w/ WMPaceInfo)

STEP 2: Ingest from the Packager to the Origin (e.g. 2S long segments)
The Packager has to aggregate several DASH segments to produce the
distributed segment

Packager-> Origin: Egress manifest

Packager-> Origin: Egress segments Variant A\n (w/ WMPaceInfo)
Packager-> Origin: Egress segments Variant B\n (w/ WMPaceInfo)

D.3 Figure 7

Participant Origin
Participant CDN Edge
Participant Device

STEP 1: Acquire a WM token
opt WM token acquisition

note over Origin,Device: Implementation specifie
end

STEP 2 : Get the DASH manifest or HLS playlist=for the viewing session
alt Obtain DASH manifest
Device->+CDN Edge: Get MPD (WM token)
opt Manifest cache miss
CDN Edge->+Origin: Get MPD
Origin->Origin: Create a neutral MDP
Origin-->-CDN Edge: MPD
CDN Edge->CDN Edge: Cache MPD
end
CDN Edge-->-Device: MPD
else Obtain HLS playlists
Device->+CDN Edge: Get master/media playlist (WM token)
opt Master/media playlist cache miss
CDN Edge->+0Origin: Get master/media playlist
Origin->Origin: Create neutral master/media playlist
Origin-->-CDN Edge: master/media playlist
CDN Edge->CDN Edge: Cache master/media playlist
end
CDN Edge-->-Device: Master/media playlist

DASH-IF

end

42 DASH-IF CTS 00XX V0.9.0 (2023-02)

D.4

Figure 8

Participant Origin
Participant CDN Edge
Participant Device

loop Segment request for playback

Device->+CDN Edge: GET /pathname/segment i (WM token)
CDN Edge->CDN Edge: Validate WM token

alt Invalid WM token

CDN Edge-->Device: 401 Unauthorized

else Valid WM token

alt Use the dedicated endpoint for WMPacelInfo

it

${VAR})

End

end

opt

end

WMPaceInfo cache miss
CDN Edge->+Origin: GET /pathname/WMPaceInfo/segment i
note right of Origin
Origin retrieves WMPaceInfo for this segment and delivers

end note
Origin-->-CDN Edge: 200 OK response
CDN Edge ->> CDN Edge: Cache response

else Retreive WMPacelInfo from response header

end

opt

end

Variants cache miss

CDN Edge->+Origin: GET /pathname/${variantPath}segment i
Origin-->-CDN Edge: 200 OK response

CDN Edge ->> CDN Edge: Cache response

CDN Edge->+0Origin: GET /pathname/${variantPath}segment /1
Origin-->-CDN Edge: 200 OK response

CDN Edge ->> CDN Edge: Cache response

alt Invalid Request: no WMPacelInfo for this segment

CDN

Edge-->Device: 400 Bad Request

else Valid Request: WMPacelInfo available for this .segment

end

CDN
CDN
alt

end
CDN

Edge ->> CDN Edge: Create WMPaceInfoObject from cache
Edge ->> CDN Edge: VAR=getVariant (WM teoken, WMPaceInfoObject)
If using the dedicated endpoint for WMPaceInfo
opt Segment Variant cache miss
CDN Edge->+0Origin: GET /pathname/${VAR}/segment i
Origin-->-CDN Edge: 200 OK /pathname/${VAR}/segment i
CDN Edge ->> CDN Edge: Cache /pathname/S${VAR}/segment i
end

Edge-->Device: 200 OK with /pathname/segment i (Variant

Device->Device: Play Content

D.5

Figure 9

Participant Origin
Participant CDN Edge
Participant Device

DASH-IF

43 DASH-IF CTS 00XX V0.9.0 (2023-02)

loop Segment request for playback (including init segment)
Device->+CDN Edge: GET /pathname/filename (WM token, byterange)
CDN Edge->>CDN Edge: Validate WM token
alt Invalid WM token
CDN Edge-->Device: 401 Unauthorized
else Valid WM token
opt WMPacelInfo cache miss
CDN Edge->+0Origin: GET /pathname/WMPaceInfo/filename
note right of Origin
Origin retrieves WMPaceInfo sidecar file for
this file and delivers it
end note
Origin-->-CDN Edge: 200 OK response
CDN Edge ->> CDN Edge: Cache response
end
alt Invalid Request: no WMPaceInfo for this file
CDN Edge-->Device: 400 Bad Request
else Valid Request: WMPacelInfo available for this file (one or many
objects)
CDN Edge ->> CDN Edge: Create WMPaceInfoObjects list from cache
payload
CDN Edge ->> CDN Edge:
WMPaceInfoObject=getObject (WMPaceInfoObjects, byterange)
alt Invalid byterange request
CDN Edge-->Device: 400 Bad Request (Invalid byterange)
else Valid byterange request
CDN Edge ->> CDN Edge: VAR=getVariant (WM token,
WMPaceInfoObject)
opt Byterange cache miss
CDN Edge->+Origin: Get
/pathname/${VAR}/filename (byterange)
note right of Origin
The returned payload may be larger than the requested
byterange (Partial Object Caching)
end note
Origin-->-CDN Edge: 206 Partial Content
CDN Edge ->> CDN Edge: Cache
/pathname/${VAR}/filename (byterange)
end
opt Partial Object Caching
CDN Edge->>CDN Edge: Constructrsbyterange response from
locally cached object\n/pathname/${VAR}/filename (byterange)

end
CDN Edge-->Device: 206 Partial Content
end
end
end
Device->Device: Play Content

End

DASH-IF

44 DASH-IF CTS 00XX V0.9.0 (2023-02)

Annex (informative):
Change History

Date Version Information about changes
2022-03-23 0.8.0 |Version published for first community review.
2022-02-02 0.9.0 [Version published for second community review.
2022-02-09 0.9.1

Added IANA and MP4RA registration annexes

DASH-IF

