

DASH-IF Implementation Guidelines:

Token-based Access Control for DASH

(TAC)

February 19th, 2019

DASH Industry Forum

Draft Version 1.0 (Final)

DASH-IF Token-based Access Control for DASH (TAC) 2

Scope

The scope of this document is to define a token-based access control mechanism and to enable

the signaling of Authentication and Authorization (AA) protocols for DASH-based streaming.

An Access Token is a proof that a DASH client or user of the client have been successfully

authenticated and authorized in some pre-determined AA Systems to access a particular DASH

resource, e.g. DASH segments or MPDs.

This document defines an Access Token format for accessing DASH resources and its transport

between a DASH client and a server, hence ensuring interoperability between content providers

and content delivery networks. The document focuses on the signaling and exchange

mechanisms to facilitate Access Token-protected requests for the delivery of MPDs, licenses,

keys and segments. This document can be used in addition to the general DASH-IF

Interoperability Points.

DASH-IF Token-based Access Control for DASH (TAC) 3

Disclaimer

This is a document made available by DASH-IF. The technology embodied in this document

may involve the use of intellectual property rights, including patents and patent applications

owned or controlled by any of the authors or developers of this document. No patent license,

either implied or express, is granted to you by this document. DASH-IF has made no search or

investigation for such rights and DASH-IF disclaims any duty to do so. The rights and

obligations which apply to DASH-IF documents, as such rights and obligations are set forth

and defined in the DASH-IF Bylaws and IPR Policy including, but not limited to, patent and

other intellectual property license rights and obligations. A copy of the DASH-IF Bylaws and

IPR Policy can be obtained at http://dashif.org/.

The material contained herein is provided on an "AS IS" basis and to the maximum extent per-

mitted by applicable law, this material is provided AS IS, and the authors and developers of this

material and DASH-IF hereby disclaim all other warranties and conditions, either express, im-

plied or statutory, including, but not limited to, any (if any) implied warranties, duties or

conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness

of respons-es, of workmanlike effort, and of lack of negligence.

In addition, this document may include references to documents and/or technologies controlled

by third parties. Those third party documents and technologies may be subject to third party

rules and licensing terms. No intellectual property license, either implied or express, to any

third party material is granted to you by this document or DASH-IF. DASH-IF makes no any

warranty whatsoever for such third party material.

Note that technologies included in this document and for which no test and conformance materi-

al is provided, are only published as a candidate technologies, and may be removed if no test

material is provided before releasing a new version of this guidelines document. For the

availability of test material, please check http://www.dashif.org.

If you have comments on the document, please submit comments at the following URL:

• at the github repository https://github.com/Dash-Industry-Forum/TAC/issues

• at the public repository https://gitreports.com/issue/Dash-Industry-Forum/TAC

.

http://www.dashif.org/

DASH-IF Token-based Access Control for DASH (TAC) 4

Contents

1 Introduction .. 6

1.1 General ... 6

1.2 References ... 6

1.2.1 Normative References .. 6

1.2.2 Informative References .. 7

1.3 Terms & Definitions .. 7

2 Authorization and Authentication Use Cases for DASH Resource Access Control 9

2.1 Introduction ... 9

2.2 Mandatory Pre-roll .. 9

2.3 Ad Free Premium Service .. 10

2.4 Service Provider Using CDNs ... 11

2.5 DRM License Retrieval Protection .. 13

3 Access Token Format ... 15

3.1 Introduction ... 15

3.2 Format .. 15

3.3 Transport Encoding ... 15

4 Transport Mechanism for DASH ... 16

4.1 Introduction ... 16

4.2 Access Token Transport over HTTP ... 16

5 Access Token Exchange Protocol and Signalization for DASH 17

5.1 Introduction ... 17

5.2 HTTP-based Access Token Usage .. 17

5.3 MPD-based Access Token Usage .. 18

5.4 External Protocol Access Token Usage ... 19

6 Deployment and Security Considerations .. 22

6.1 Access Token Refresh ... 22

6.2 Query string length .. 22

6.3 Safe Delivery of the Access Token ... 22

6.4 Measures Against Replay Attack .. 23

A Annex A – Overview of generic token-based access control concept (informative) 24

A.1 Token Concept and Definition .. 24

A.2 Overview of AA System Architecture ... 25

B Annex B – Overview of the signed JSON Web Token and claims from the URI Signing

specification (informative) ... 27

B.1 Introduction ... 27

DASH-IF Token-based Access Control for DASH (TAC) 5

B.2 Enforcement claims ... 27

B.3 Signature .. 27

B.4 Transport claims .. 27

B.5 Signed Token Example from [URISigning] .. 28

B.5.1 Simple Example ... 28

B.5.2 Advanced Example .. 28

C Annex C - Overview of Signaling and Exchange Mechanisms in MPEG DASH

(informative) ... 29

C.1 Introduction ... 29

C.2 Extended UrlQueryInfo in ISO/IEC 23009-1:2014 AMD 3:2016 29

C.3 Client Authentication and Content Authorization in ISO/IEC 23009-1:2014 AMD

3:2016 ... 30

DASH-IF Token-based Access Control for DASH (TAC) 6

1 Introduction

1.1 General

Common DASH use cases may require authentication of the end user or their player/device,

followed by authorization to access the content described in an MPD. The authentication and

authorization operations are commonly performed by Authentication and Authorization (AA)

systems. Because authorization depends on authentication, the two functions are usually

performed sequentially starting with authentication and then authorization.

It is also important to distinguish AA systems from DRM systems. DRM systems provide

technical means to securely deliver keys, wrapped in licenses, necessary for the decryption of

encrypted content while AA systems protect the access to a resource. The question whether the

resource is itself encrypted is irrelevant for an AA system. Therefore, Authentication and

Authorization systems and DRM systems are orthogonal and can be used in conjunction. As a

matter of fact, the delivery of DRM licenses and keys are protected by an Authentication and

Authorization system. Furthermore, an AA system does not require a DRM system and an AA

system may simply protect the access to an unencrypted content.

Example scenarios where authorization is useful, possibly with additional mechanisms, are:

- Streaming is restricted to a geographic region where the service provider has

distribution rights.

- Streaming is restricted to DASH clients that present ads in the video, MPD, or

signaled for insertion; and accurately report playback.

- Streaming is restricted to end users who are subscribers or have purchased

rental/ownership for streaming/download of SD/HD/UHD quality, for a particular date

range or number of views, for particular devices and protection systems, for a

maximum number of devices or simultaneous streams, etc.

- Streaming is enabled using federated identity systems such as TV Everywhere,

UltraViolet, OpenID, and various SSO systems (Single Sign On), and federated rights

systems such as DECE, KeyChest, TV Everywhere, etc.

This document defines the signaling, the exchange mechanism of Access Tokens and the

Access Token format for granting the DASH clients access to DASH resources, e.g. DASH

segments, MPDs, etc. Typically, AA information takes the form of AA Tokens as proofs that

the clients or the users of the clients have been authenticated and authorized according to some

pre-determined AA systems (or schemes). Essentially, the goal of this document is to enable

interoperability of the resource access control between DASH clients and servers delivering

DASH content while allowing the choice of the enforcement rules by the content provider.

The signaling and the exchange mechanisms defined in this document leverages on the AA

signaling and information exchanging mechanisms defined in [DASH-AMD3].

1.2 References

1.2.1 Normative References

[DASH] ISO/IEC 23009-2:2014 Information technology - Dynamic adaptive streaming over

HTTP (DASH) - Part 1: Media presentation description and segment formats.

DASH-IF Token-based Access Control for DASH (TAC) 7

[DASH-AMD3] ISO/IEC 23009-1:2014/Amd 3:2016, Authentication, MPD linking, Callback

Event, Period Continuity and other Extensions, October 2016.

[URISigning] URI Signing for CDN Interconnection (CDNI), R. van Brandenburg, K. Leung,

P. Sorber, October 23, 2018, https://tools.ietf.org/html/draft-ietf-cdni-uri-signing-16.

[RFC-7519] JSON Web Token (JWT), M. Jones, J. Bradley, N. Sakimura, May 2015.

1.2.2 Informative References

[RFC-7230] Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing, R.

Fielding, J. Reschke, June 2014.

[DASH-IOP] Guidelines for Implementation: DASH-IF Interoperability Points, December

2016.

[OMAP] Online Multimedia Authorization Protocol. Open Authentication Technology

Committee. Version 1.0, August 22, 2012.

[OAuth] RFC 6749, The OAuth 2.0 Authorization Framework, D. Hardt, Ed., October 2012.

[CPA] ETSI TS 103 407: Cross Platform Authentication for limited input hybrid consumer

equipment, https://tech.ebu.ch/cpa.

1.3 Terms & Definitions

AA Token

authentication token or authorization token

Access Token

token granting, if valid, the access to a resource identified by an URL

Authentication

process of determining whether a user or client is who or what it is claims to be or not. This

may rely on some type(s) of user and/or client identification and credentials

Authentication Token

token as a proof of being authenticated

Authorization

process of determining whether a user or client has permissions to access content or not. This

may rely on authenticating the user or client

Authorization Token

token as a proof of being authorized

Content

One or more audio-visual elementary streams and the associated MDP if in DASH format

Token

form of credentials or proof, used for some purpose, encoded digitally as a string, possibly with

opaque parts

Policy Enforcement Element

parameters implementing rules limiting the validity of a Token

Signature

https://tools.ietf.org/html/draft-ietf-cdni-uri-signing-16
https://tech.ebu.ch/cpa

DASH-IF Token-based Access Control for DASH (TAC) 8

a data structure cryptographically securing that the Policy Enforcement Elements are authentic,

complete and not tampered

DASH-IF Token-based Access Control for DASH (TAC) 9

2 Authorization and Authentication Use Cases for DASH Resource
Access Control

2.1 Introduction

Authentication and Authorization information needs to be exchanged between DASH system

entities, typically servers and clients, in order to allow DASH clients to access protected

content. Typically, the AA information takes the form of AA Tokens. Upon reception of valid

AA Tokens, the client obtains an Access Token. Consequently, when requesting segments or

MPDs, the client provides the Access Token along with the requests. When the Access Token

is valid, the server grants access to the content and deliver the resource to the client. Note that

the AA Systems and workflows for generating these Access Tokens may vary and depends on

several factors, such as available client identification and credentials, server requirements and

security measures as well as the type and quality of content that can be On Demand or Live,

and SD, HD or UHD.

This section presents different use cases of Access Token generations and exchanges granting

access to DASH resources. For the generic use case of HTTP resource protected by a token

system see Annex A.

The Access Tokens scenarios can be characterized by the following aspects: the issuer, the

receiver, the validity period, the scope, the transport. The following use cases reflect different

variations of the Access Token scenarios.

2.2 Mandatory Pre-roll

A service provider offers MPDs that contain two Periods, i.e. one for a pre-roll advertisement

and one for the main content. The service provider requires that the DASH clients first play the

pre-roll advertisement before being able to retrieve the main content. The end users must first

contact the ad server before viewing the main content. To this end, an Access Token protects

the delivery of the main content. Only the segment requests providing a valid Access Token are

granted. In addition, the service provider configured the HTTP server delivering the

advertisement to insert the segment Access Token for the main content in the HTTP response

of the advertisement segment. A possible flow is shown in Figure 1.

DASH-IF Token-based Access Control for DASH (TAC) 10

Figure 1 - Ad pre-roll download sequence

2.3 Ad Free Premium Service

In this use case, the same service provider, as in use case 2.2, wants to offer the possibility to

pay a monthly fee to be able to skip the pre-roll advertisement. The end user must authenticate

DASH-IF Token-based Access Control for DASH (TAC) 11

himself/herself via the portal and subscribe to the ad free feature. Upon MPD download, the

MPD server provides the MPD along with the segment Access Token generated by the

Authorization Server shortly before. Note that, in this case, the MPD only contains the main

video without the advertisement period as in the previous use case. A possible flow is shown in

Figure 2.

Figure 2 - Ad free viewing for premium client sequence

2.4 Service Provider Using CDNs

A service provider wants to manage its movie catalog but outsources the delivery of the MPD

and the segments to a CDN provider. In this case, the CDN has no business logic to decide

whether a DASH client requesting an MPD or a segment is authorized to retrieve the content.

DASH-IF Token-based Access Control for DASH (TAC) 12

However, a CDN may verify whether a token is valid using signed information, e.g. the

expiration time, client IP address, etc. The end user first purchases a movie via the portal of the

service provider. Upon success, the portal gives the MPD URL as well as a short-term Access

Token to the application. This Access Token is a short-term token, i.e. it expires couples of

seconds after its generation. It mitigates the risk of unauthorized clients using the token after its

generation. Consequently, the application sends a MPD request to the CDN along with the

short-term Access Token. The CDN verifies its validity and delivers a new Access Token with

a new validity time inside the MPD response for the DASH client to access the segments. This

Access Token may have a longer validity period compared to the one for the MPD. Every time

the DASH client requests a segment it uses the latest received Access Token. Upon segment

requests, the CDN returns a refreshed Access Token to extend the chain of tokens. More details

on this mechanism are provided in paragraph 6.1. A possible flow is shown in Figure 3.

DASH-IF Token-based Access Control for DASH (TAC) 13

Figure 3 - Segment access token sequence with CDN integration

2.5 DRM License Retrieval Protection

A DRM system provides an API to download a license embedding content keys for decrypting

DASH content. This API can be used only by authorized DASH client. These DASH clients

get an Access Token to request a license. To this end, the HTTP server hosting content key is

configured to require the presence of a valid Access Token in the request for a license.

Although the retrieval of license key is not signaled within the MPD, a workflow similar to

Media Segments and MPD retrieval can be applied to the protection of license key acquisition.

DASH-IF Token-based Access Control for DASH (TAC) 14

For this workflow, it assumed that the license is identified by the following URL

https://drm.com/license.key and that the Authentication Server of the DRM system is exposed

at https://drm.com/authenticate. Note though that the protocol to authenticate the user is out-of-

scope.

A possible flow is shown in Figure 4.

Figure 4 - Segment access token sequence with DRM System

https://drm.com/authenticate

DASH-IF Token-based Access Control for DASH (TAC) 15

3 Access Token Format

3.1 Introduction

[URISigning] defines a token format for protecting the access to any resource identified by a

URL. The token format relies on a signed JSON Web Token (JWT) [RFC-7519] profile.

Additionally, [URISigning] specifies new JWT claims to support the use case of token-based

protection for segmented content, especially for adaptive streaming scenarios. More

information, can be found in Annex B.

This section specifies the format and the transport encoding of the Access Token.

3.2 Format

The Access Token shall be formatted as defined in Section 2 of [URISigning]. In addition, the

CDNI Signed Token Transport (cdnistt) claim value of the Access Token shall be set the

value of 2.

The [URISigning] specification provides the ability to parametrize the transport mechanism via

this JWT cdnistt claim.

The value "2" is registered as the "DASH-IF Token Transport"

Editor's note: The CDNI working group has not yet created the registry. The actual value might

change upon registration.

An overview of the JWT claims defined in [URISigning] is provided in Annex B for

information.

3.3 Transport Encoding

The Access Token shall be encoded as a signed JWT as defined in [URISigning].

DASH-IF Token-based Access Control for DASH (TAC) 16

4 Transport Mechanism for DASH

4.1 Introduction

Using cookies (cdnistt value 1 in [URISigning]) to communicate tokens in general can be

problematic for the following reasons:

- Some embedded devices do not use the same User Agent to get the MPD and the

segment, resulting in cookie not found.

- When content providers use multiple CDNs or deliver MPDs from a domain other than

the segments, cookies are not delivered to the CDN since cross-domains cookie is not

supported.

- Cookie support across browsers varies to such a degree that even across versions of the

same browser it may differ significantly

Therefore, the transport of the Access Tokens specified in this document does not rely on

cookies but relies on HTTP header extensions and on query string parameters as specified in

this paragraph.

4.2 Access Token Transport over HTTP

The Access Token shall be transported in a HTTP header field when communicated in a HTTP

2xx Successful message.

The following ABNF syntax for the header field shall be used:

DASH-header-field = "DASH-IF-IETF-Token" ":" token

token = access-token

The field access-token contains an Access Token whose format is defined in paragraph

3.2 and encoded as defined in paragraph 3.3.

The Access Token shall be transported in a query string parameter when communicated in a

HTTP 3xx Redirection message or in a HTTP request.

The query string parameter name shall be "dash-if-ietf-token" and shall contain an

Access Token whose format is defined in paragraph 3.2.

NOTE – Although HTTP header names are case insensitive, the typography used above helps

the distinction between the HTTP header name and the query string parameter name.

NOTE – Future token format may be added a later point in time by defining new

combinations of HTTP custom header name and query string parameter names.

DASH-IF Token-based Access Control for DASH (TAC) 17

5 Access Token Exchange Protocol and Signalization for DASH

5.1 Introduction

This section specifies the signaling of the protocol to acquire and exchange an Access Token.

It also specifies the successive steps for the acquisition and use of an Access Token for some

specific protocols.

The specification enables three types of mechanisms for a DASH client to retrieve the initial

Access Token. The MPD author may choose one of these three types.

- The first mechanism instantiates the Access Token request from regular DASH

operations, e.g. MPD request, segments requests, Xlink resolution etc. In practice, the

HTTP server delivers the Access Token along with the requested resource. The MPD

author signals in the MPD how and where to extract the Access Token. This is a HTTP-

based exchange protocol. More details are provided in paragraph 5.2.

- The second mechanism instantiates the Access Token request from an appropriate XML

element in the MPD. In some situations, the MPD may not be delivered via HTTP or

the MPD author wishes to embed the initial Access Token within the MPD itself. This

is a MPD-based exchange protocol. More details are provided in paragraph 5.3.

- The last mechanism instantiates the Access Token request via an external protocol. In

this case, the MPD signals the protocol to be used by the application to retrieve the

Access Token. When the application recognizes one of the signaled protocols, it

executes the corresponding protocol as specified by the scheme. Since out-of-scope of

this specification, it is expected that the application implements the different steps of

the protocol that leads to the acquisition of the Access Token. This is an external-based

exchange protocol. More details are provided in paragraph 5.4.

NOTE – In both first and second mechanisms, the DASH client is agnostic as to what the nature

and content of the Access Token are. The DASH client merely sees the Access Token as an

opaque string that needs to passed along with future HTTP requests.

5.2 HTTP-based Access Token Usage

For this type of Access Token acquisition, the Access Token is delivered to the DASH client

via regular DASH operations following the HTTP transport mechanisms specified in paragraph

4.

The Access Token may be delivered in the header of a MPD response, a segment response, a

xlink response, etc... Consequently, the MPD author needs to instruct the DASH client where

to extract the Access Token from. To this end, the ExtUrlQueryInfo, defined in I.3 of

[DASH-AMD3], shall be used and should be configured according to the mechanism expected

by the MPD author.

The example MPD below signals the presence of the Access Token in the HTTP responses for

MPD requests (@headerParamSource attribute) inside the HTTP custom header called

“DASH-IF-IETF-Token” and instructs the DASH client to insert this Access Token into

segment and MPD requests within the “dash-if-ietf-token” query string parameter.

<AdaptationSet mimeType="video/mp4" segmentAlignment="true" startWithSAP="1" maxWidth="1280"

maxHeight="720" maxFrameRate="25" par="16:9">

 <EssentialProperty schemeIdUri="urn:mpeg:dash:urlparam:2016:querystring"

xmlns:up="urn:mpeg:dash:schema:urlparam:2016">

 <up:ExtUrlQueryInfo

 headerParamSource="mpd"

DASH-IF Token-based Access Control for DASH (TAC) 18

 includeInRequests="segment mpd"

 queryTemplate="dash-if-ietf-token=$header:DASH-IF-IETF-Token$"/>

 </EssentialProperty>

 <SegmentTemplate duration="2" startNumber="1" media="seg$Number$.mp4">

 </SegmentTemplate>

 <Representation id="v0" codecs="avc3.4d401f" width="1280" height="720" frameRate="25"

sar="1:1" bandwidth="3000000"/>

</AdaptationSet>

In the example above, the DASH client is expected to perform the following steps according to

[DASH-AMD3] when sending HTTP requests for MPD and segments.

Step Action URL construction

1 Determine the base URL of the

resource

http://cdn.com/movie/seg1.mp4

2 Insert the query string part in the base

URL using the @queryTemplate

attribute

http://cdn.com/movie/seg1.mp4?dash-if-ietf-

token=$header:DASH-IF-IETF-Token$

3 Determine the most recent value of the

HTTP header ‘Access-Token’

attribute received in a MPD response.

HTTP/1.1 200

DASH-IF-IETF-Token:
rtziwO2HwPfWw~yYD

<MPD>

…

</MPD>

4 Substitute the expression in the query

template

http://cdn.com/movie/seg1.mp4?dash-if-ietf-

token=rtziwO2HwPfWw~yYD

NOTE – The body of the HTTP response can be cached by the CDN edge in this case since the

MPD is not client specific. Only the HTTP header value for the Access Token is computed on-

the-fly which is customary for many of the HTTP headers in HTTP responses.

5.3 MPD-based Access Token Usage

The Access Token may be inserted in the MPD.

The @queryString attribute of either the UrlQueryInfo or ExtUrlQueryInfo

descriptors shall be used to carry the Access Tokens.

Below is an example using the ExtUrlQueryInfo descriptor:

<EssentialProperty schemeIdUri="urn:mpeg:dash:urlparam:2016:querystring"

xmlns:up="urn:mpeg:dash:schema:urlparam:2016">

 <up:ExtUrlQueryInfo

 includeInRequests="mpd segment"

 queryString="token=nitfHRCrtziwO2HwPfWw~yYD"

 queryTemplate="dash-if-ietf-token=$query:token$"/>

 </EssentialProperty>

</EssentialProperty>

NOTE – The query string parameter in the @queryString attribute is not normatively

defined. The MPD author may choose the query string parameter name it wishes.

When using the UrlQueryInfo descriptor, the echoing mechanism described in paragraph

5.2 is not possible.

DASH-IF Token-based Access Control for DASH (TAC) 19

This EssentialProperty should be located in the appropriate level in the MPD, for

instance in a Representation, an Adaptation Set, etc... In the example above, the DASH client

is expected to perform the following steps according to [DASH-AMD3] when sending HTTP

requests for MPD and segments.

Step Action URL construction

1 Determine the base URL of the

resource

http://cdn.com/movie/seg1.mp4

2 Insert the query string part in the base

URL using the @queryTemplate

attribute

http://cdn.com/movie/seg1.mp4?dash-if-ietf-

token=$query:token$

3 Substitute the expression in the query

template, i.e. extracting the value of the

parameter access-token in the

@queryString attribute

http://cdn.com/movie/seg1.mp4?dash-if-ietf-

token=nitfHRCrtziwO2HwPfWw~yYD

4 Send the HTTP request with the final

URL

GET http://cdn.com/movie/seg1.mp4?dash-

if-ietf-

token=nitfHRCrtziwO2HwPfWw~yYD$

NOTE – The MPD is in this case personalized for a given DASH client. As a result, the

generated MPD cannot be cached for serving different DASH client requests.

5.4 External Protocol Access Token Usage

There are possible AA protocols that can be used as external protocols. However, their

integration has not been verified and may require non-interoperable measures to implement

them.

These protocols are:

- Multimedia Authorization Protocol [OMAP]

- The OAuth 2.0 Authorization Framework [OAuth]

- EBU's Cross-Platform Authentication [CPA]

The external instantiation of Access Tokens comprises the following additional aspect

compared to the protocol specified in 3 Access Token Format :

- Use of the Authentication and Authorization descriptors in [DASH-AMD3],

o to signal any AA schemes and possibly parameters needed to obtain Access

Tokens, and

o to carry any available Access Tokens or to signal any URLs where Access

Tokens can be retrieved.

The table below constitutes the only normative aspect introduced by this section.

DASH-IF Token-based Access Control for DASH (TAC) 20

Table 1 - Parameter identifier for substitution in query string template

$<Identifier>$ Substitution parameter

$AASchemeIdUri$ The identifier shall be substituted by the scheme identifier of the

EssentialProperty whose attribute @id value was

"mpeg:dash:content-authorization:2015" that was

used to obtain the Access Token.

$AccessToken$ The identifier shall be substituted by the Access Token obtained via

an AA System.

The Client Authentication and Content Authorization descriptors in [DASH-AMD3] provide a

mechanism to signal identification information of AA Systems. The following examples

illustrate how client authentication and content access authorization information is signaled in

the MPD.

<EssentialProperty schemeIdUri="urn:org:example:plan-a"

id="mpeg:dash:client-authentication:2015"

value="http://domain.com/authenticationServerA/protocolA?=ServiceSpecificInfoA"/>

<EssentialProperty schemeIdUri="urn:org:example:plan-b"

 id="mpeg:dash:client-authentication:2015"

value="http://domain.com/authenticationServerA/protocolB?=ServiceSpecificInfoB"/>

<EssentialProperty schemeIdUri="urn:org:example:plan-c"

 id="mpeg:dash:content-authorization:2015"

value="http://domain.com/authorizationServerC/protocolC?=ContentSpecificInfoC"/>

<EssentialProperty schemeIdUri="urn:org:example:plan-d"

 id="mpeg:dash:content-authorization:2015"

value="http://domain.com/authorizationServerD/protocolD?=ContentSpecificInfoD"/>

The application on top of the DASH client is expected, in the nominal case, to perform the

following actions.

Step Action

1 Find the supported Client Authentication descriptors if any

2 Execute one of the supported Client Authentication protocol whose endpoint is

signaled in the @value attribute

3 Retrieve the Authentication Token as proof of a successful client authentication

4 Find the supported Content Authorization descriptors if any

5 Execute one of the supported Content Authorization protocols whose endpoint

is signaled in the @value attribute. It may require to provide the Authentication

Token from step 3, if present, depending on the actual protocol.

6 Receive the Access Token

The UrlQueryInfo provides the DASH client with the query string to append in the segment

URL:

DASH-IF Token-based Access Control for DASH (TAC) 21

<AdaptationSet mimeType="video/mp4" segmentAlignment="true" startWithSAP="1" maxWidth="1280"

maxHeight="720" maxFrameRate="25" par="16:9">

 <EssentialProperty schemeIdUri="urn:mpeg:dash:urlparam:2014"

xmlns:up="urn:mpeg:dash:schema:urlparam:2014">

 <up:UrlQueryInfo queryTemplate="system=$AASchemeIdUri$&token=$AccessToken$"/>

 </EssentialProperty>

 <SegmentTemplate duration="2" startNumber="1" media="seg$Number$.mp4"/>

 <Representation id="v1" codecs="avc3.4d401f" width="640" height="360" frameRate="25"

sar="1:1" bandwidth="1500000"/>

</AdaptationSet>

NOTE – Since this instantiation use external protocols and token formats, there is neither

normative HTTP header name nor query string names to use. This is up to the MPD author to

choose them.

The DASH client is then expected to perform the following steps:

Step Action URL construction

1 Determine the URL of the

segment

http://cdn.com/movie/seg1.mp4

2 Insert the query string part

in the requested URL

according to the
@queryTemplate

attribute

http://cdn.com/movie/seg1.mp4?

system=$AASchemeIdUri$&token=$AccessToken$

3 Substitute

$AASchemeIdUri$ and

$AccessToken$ with

the AA scheme used and

the Access Token retrieved

from it.

http://cdn.com/movie/seg1.mp4?

system=urn:org:example:plan-c&token=PfWw~yYD

4 Send the HTTP request

with the final URL

GET http://cdn.com/movie/seg1.mp4?

system=urn:org:example:plan-c&token=PfWw~yYD

DASH-IF Token-based Access Control for DASH (TAC) 22

6 Deployment and Security Considerations

6.1 Access Token Refresh

In some cases, the Access Token may expire while the user may want to continue the playback

of the content, for instance when the user paused the playback for a certain amount of time.

For enabling the refresh of the Access Token, the descriptor ExtUrlQueryInfo must be

used in combination with the instantiation described in paragraph 5.2. As specified by Table I.4

[DASH-AMD3], the DASH client shall insert in the query string "the latest received value of

the header-name HTTP header in the HTTP responses indicated by the

@headerParamSource attribute".

This way, an Authorization Server located on the HTTP server serving the Media Segments can

send a refreshed Access Token upon reception of a segment request containing a valid Access

Token. See Section 3 of [URISigning] for more details on generating refreshed Access Tokens.

When MPD update mechanism is used, the DASH client regularly sends an HTTP request at

the MPD location. In addition, it is possible to protect the MPD and the Media Segments with

the same Access Token using an appropriate path pattern value (see URI Pattern Container

(UPC) in Annex B.2). This way, it is also possible to refresh the Access Token every time the

DASH client fetches a new MPD version. For this to work, the validity period of the Access

Token should be set to a value greater or equal to the period between two MPD are fetched by

the DASH clients.

6.2 Query string length

Although not bounded in length by specifications, query strings may have in practice a

maximum length in web browser implementations and HTTP server configuration. As a result,

one should take care of verifying that the HTTP server handling the Access Token validation

and generation are properly configured to handle such long query strings. Nevertheless, it is

already very common for many web applications or even streaming services to use long query

strings to convey additional information. The transport of the Access Token does constitute a

higher requirement in that respect.

6.3 Safe Delivery of the Access Token

As any sensitive data, care should be taken to the delivery of the Access Token. There are

mainly two risks when the Access Token travels between an HTTP server and a DASH client.

The first risk is that an intermediate entity seating on the delivery path intercepts the HTTP

request or response and extracts the Access Token. This is also known as man-in-the-middle

attack. When the Access Token is intercepted, the CDN is subject to replay attack, see 6.4 for

counter-measures. The second risk is the loss of the Access Token in HTTP headers when

HTTP responses are badly proxied on the way to the DASH client. Although rare and seen as

bad implementation of the proxy according to [RFC7230] (Section 3.2.1), there is a chance that

the Access Token header gets stripped off and never reaches the DASH client. For both

preventing the interception and the loss of HTTP header, TLS over HTTP can be used to deliver

the DASH resource (Media Segments or MPD) along with the Access Token. TLS protocol

prevents attack of this nature by encrypting end-to-end the information exchanged between the

HTTP server and the DASH client, including HTTP headers and query string parameters that

hold the Access Token. Note that this is the same recommendation as proposed by [DASH-

IOP] in paragraph 3.4.4 Transforming Proxies and Other Adaptation Middleboxes when dealing

with proxies.

DASH-IF Token-based Access Control for DASH (TAC) 23

6.4 Measures Against Replay Attack

Assuming the transport of the Access Token prevents the leakage of the Access Token (see

paragraph 6.3), there may be rogue DASH clients that share their Access Token with

illegitimate DASH clients. To mitigate this risk, these following measures can be applied:

- Validating the incoming request against client IP and information from the header

attributes.

- Keep the validity period of the Access Token short by setting the Not Before (nbf) and

the Expiry Time (exp) JWT claims around the estimated time of the client request.

- Enforce a one-time use of the Access Token via the Nonce (jti) JWT claim.

These measures are explained in greater details in paragraph 7 of [URISigning].

DASH-IF Token-based Access Control for DASH (TAC) 24

A Annex A – Overview of generic token-based access control concept
(informative)

A.1 Token Concept and Definition

An Access Token is a proof of one or more past actions granting access to a resource. Figure 5

shows the concept of accessing a protected resource with a token.

A client is sending an HTTP request to an HTTP server. If the HTTP request does not contain

a valid token or any token at all, the HTTP server does not serve the request. On the contrary,

if a valid token is provided in the HTTP request, the HTTP server delivers the requested

resource. In the context of DASH, the resource can be for instance MPDs or media segments.

A token can be characterized by two main aspects:

- The required action to obtain the token

- The rules that determine the validity of the token

When the action to obtain a token involves authenticating a client, this token is usually called

Authentication Token. Similarly, when the action to obtain a token involves authorizing a client,

this token is usually called Authorization Token. Note also that these two steps are commonly

chained, i.e. a client needs to provide an Authentication Token before requesting an

Authorization Token.

Regarding the validity rules of a token, they typically involve a validity time, a resource

identifier, e.g. an URL, an IP address of the allowed clients, etc. Nevertheless, the DASH client

is agnostic as to what the token holds as information and merely sees it as an opaque string.

Only the entity issuing the token and the one validating it must understand the token format.

DASH-IF Token-based Access Control for DASH (TAC) 25

Figure 5 - Token-protected resource retrieval

A.2 Overview of AA System Architecture

This informative section gives an overview of the functions involved in AA System. The DASH

client and/or the application around is able to request and retrieve a token that grants him access

to the requested resource such as segments, MPD, etc.

DASH-IF Token-based Access Control for DASH (TAC) 26

Figure 6 - AA System Architecture

Figure 6 shows logical entities that may request, issue, provide and verify token-based AA

information for the purpose of granting access to requested MPD, DRM licenses, crypto keys

and content segments. A physical entity may combine multiple logical roles, and a logical role

can be played by more than one physical entities (e.g., accessing segments of different types

and qualities may be authorized by different Authorization Servers and verified by different

Verification Servers). The point of origin for information (e.g., credentials and protocols used

for obtaining tokens) and information contained within tokens can differ; so various information

flows in requesting and generating tokens are possible.

DRM (license/key)

Server

DASH

Client

Authentication

Server

Authorization

Server

Verification

Server

DASH Segment

Server

MPD Server

1. AA Token request 2. Access Token

response

3. MPD/License/Key/Segment

request with Access Token(s)

4. MPD/License/Key/Segment

response, if Access Token(s) are

verified

…

DASH-IF Token-based Access Control for DASH (TAC) 27

B Annex B – Overview of the signed JSON Web Token and claims from
the URI Signing specification (informative)

B.1 Introduction

The following gives an overview of the way [URISigning] uses signed JSON Web Token

(JWT), defined in [RFC-7519], as well as specific claims for the purpose of client authorization.

Note that this only gives an short introduction and it is encouraged to read the specification

[URISigning] for completeness.

The [URISigning] specification essentially defines a method for an HTTP server to validate an

incoming HTTP request sent by a user agent. The validation relies on the presence of a valid

signed JWT. Two types of information are specified by [URISigning]: the information on the

transport of the signed JWT and the set of claims that can be used to enforce a certain

distribution policy by the content provider.

B.2 Enforcement claims

The following claims are used to enforce the distribution policy which determines whether the

requested resource may be delivered to the client:

- Issuer (iss) [optional] – This claim may be used to validate authorization of the issuer

of a signed JWT and may be used to confirm that the indicated key was provided by

said issuer.

- URI Container (cdniuc) [mandatory] –This representation can take one of several

forms detailed in [URISigning], namely a URI Hash Container or URI Regular

Expression Container. If the hash or the regex in the signed JWT does not match the

URI of the content request, the CDN rejects the request

- Client IP (cdniip) [optional] – IP address, or IP prefix, for which the Signed URI is

valid. If the CDN validating the signed JWT does not support Client IP validation, or if

the Client IP in the signed JWT does not match the source IP address in the content

request, the CDN rejects the request.

- Expiry Time (exp) [optional] – Expiration time on or after which the JWT is no longer

accepted for processing. If the CDN validating the signed JWT does not support Expiry

Time validation, or if the Expiry Time in the signed JWT corresponds to a time earlier

than the time of the content request, the CDN rejects the request.

- Not Before (nbf) [optional] – Time before which the JWT is not yet accepted for

processing. If the CDN validating the signed JWT does not support Not Before time

validation, or if the Not Before time in the signed JWT corresponds to a time later than

the time of the content request, the CDN rejects the request.

- Nonce (jti) [optional] – A unique identifier for the JWT. Can be used to prevent replay

attacks if the CDN stores a list of all previously used Nonce values, and validates that

the Nonce in the current JWT has never been used before.

See Section 2.1 in [URISigning] for further details on each claim.

B.3 Signature

The [URISigning] specification leverages the signature feature of the JWT.

B.4 Transport claims

DASH-IF Token-based Access Control for DASH (TAC) 28

In addition, the [URISigning] specification specifies parameters pertaining to the transport

mechanism:

- CDNI Expiration Time Setting (cdniets) [optional]: It denotes the number of seconds

to be added to the time at which the JWT is validated that gives the value of the Expiry

Time (exp) claim of the next signed JWT.

- CDNI Signed Token Transport (STT) [optional]: The CDNI Signed Token Transport

(cdnistt) claim provides a means of signalling the method through which a new

signed JWT is transported from the CDN to the UA and vice versa for the purpose of

Signed Token Renewal.

B.5 Signed Token Example from [URISigning]

B.5.1 Simple Example

In this example, the Access Token only limits which resource can be requested but does not

provide client enforcement rules not expiration time of the token. The JWT Claim Set before

signing would be:

 {

 "exp": 1474243500,

 "iss": "uCDN Inc",

 "cdniuc": "hash:sha-256;2tderfWPa86Ku7YnzW51YUp7dGUjBS_3SW3ELx4hmWY"

 }

B.5.2 Advanced Example

In this example, the Access Token contains an encrypted client IP, an expiration time, a unique

identifier and a not-before time. The set of resources that can be requested are identified by a

regex. The JWT Claim Set before signing would be:

 {

 "aud": "dCDN LLC",

 "sub": "eyJlbmMiOiJBMTI4R0NNIiwiYWxnIjoiZGlyIiwia2lkIjoiZi1XYmp4

 QkMzZFB1STNkMjRrUDJoZnZvczdRejY4OFVUaTZhQjBoTjk5OCJ9..XsJ7ySeChORS

 Iojp.R1U8ESGU2NnW.DWR8pTbeCwQZca6SitfX_g",

 "cdniip": "eyJlbmMiOiJBMTI4R0NNIiwiYWxnIjoiZGlyIiwia2lkIjoiZi1XY

 mp4QkMzZFB1STNkMjRrUDJoZnZvczdRejY4OFVUaTZhQjBoTjk5OCJ9..SuzoOnfg-

 GVh-BOc.wQ9iSR1sTj-A04CiDmvcgg.9Ts_cIEUw6Yc6U5HaH1UPQ",

 "cdniv": 1,

 "exp": 1474243500,

 "iat": 1474243200,

 "iss": "uCDN Inc",

 "jti": "5DAafLhZAfhsbe",

 "nbf": 1474243200,

 "cdniuc": "regex:http://cdni\\.example/foo/bar/[0-9]{3}\\.png"

 }

DASH-IF Token-based Access Control for DASH (TAC) 29

C Annex C - Overview of Signaling and Exchange Mechanisms in MPEG
DASH (informative)

C.1 Introduction

This section provides an overview of the signaling and exchange mechanism in [DASH-

AMD3].

C.2 Extended UrlQueryInfo in ISO/IEC 23009-1:2014 AMD 3:2016

The Amendment 3 [DASH-AMD3] introduces the ExtUrlQueryInfo element. It exhibits

features to support advanced workflows desirable for the exchange of AA Tokens. For instance,

the MPD author can indicate that the value of a query string parameter of a segment request is

to be found in headers of HTTP responses. In addition, the type of HTTP responses to be

inspected for values can also be explicitly signaled, namely “segment”, “xlink”, “mpd” and

“callback”. This typically enables the retrieval of AA Tokens in HTTP responses headers and

its insertion as query string parameters in future segment requests by the DASH client.

Here is an example of implementing a token exchange between server and DASH client. Let us

assume that the CDN provides an access token in the HTTP header named "AA-token" in a

MPD response, the following MPD example instructs the DASH client to extract the value of

this header from MPD and segment responses and to insert it back in the query string parameter

"AA-token" for MPD and segment requests.

In particular, the DASH client parses the @queryTemplate attribute of the

ExtUrlQueryInfo element. The header key (left to “:”) indicates that the values have to be

extracted from headers of HTTP responses. The header name (right to “:”) indicates the name

of the header whose values needs to be extracted by the DASH client. In this example, the

DASH client will extract the value of the HTTP header “AA-token-server” from MPD

responses (see @headerParamSource attribute) and will insert it in every segment and MPD

request (see @includeInRequests) in the query string “AA-token”.

<AdaptationSet mimeType="video/mp4" segmentAlignment="true" startWithSAP="1" maxWidth="1280"

maxHeight="720" maxFrameRate="25" par="16:9">

 <EssentialProperty schemeIdUri="urn:mpeg:dash:urlparam:2016:querystring"

xmlns:up="urn:mpeg:dash:schema:urlparam:2016">

 <up:ExtUrlQueryInfo

 headerParamSource="mpd"

 includeInRequests="segment mpd"

 queryTemplate="AA-token=$header:AA-token-server$"/>

 </EssentialProperty>

 <SegmentTemplate duration="2" startNumber="1" media="video_$Number$_$Bandwidth$bps.mp4">

 </SegmentTemplate>

 <Representation id="v0" codecs="avc3.4d401f" width="1280" height="720" frameRate="25"

sar="1:1" bandwidth="3000000"/>

 <Representation id="v1" codecs="avc3.4d401f" width="640" height="360" frameRate="25"

sar="1:1" bandwidth="1500000"/>

</AdaptationSet>

Let us assume that the HTTP response for the MPD is as follows:

HTTP/1.1 200 OK

Content-Length: 3458

Cache-Control: max-age=86400

Content-Type: application/dash+xml

AA-token-server: abcdef

<?xml version="1.0" encoding="UTF-8"?>

<MPD>

DASH-IF Token-based Access Control for DASH (TAC) 30

…

</MPD>

1. Computation of an initial query string:

initialQueryString = "AA-token-server=abcdef"

2. Computation of a final query string:

finalQueryString = "AA-token=abcdef"

3. Modified media segment URLs building process:

http://www.example.com/dash/video_1_3000000bps.mp4?AA-

token=abcdef

http://www.example.com/dash/video_2_3000000bps.mp4?AA-

token=abcdef

http://www.example.com/dash/video_3_3000000bps.mp4?AA-

token=abcdef

http://www.example.com/dash/video_4_3000000bps.mp4?AA-

token=abcdef

C.3 Client Authentication and Content Authorization in ISO/IEC 23009-
1:2014 AMD 3:2016

The following examples illustrate how client authentication and content access authorization

information is signaled in the MPD according to [DASH-AMD3].

<EssentialProperty schemeIdUri="urn:org:example:plan-a"

 id="mpeg:dash:client-authentication:2015" `

 value="http://authentication.serverA.com/protocolA?=ServiceSpecificInfoA"/>

<EssentialProperty schemeIdUri="urn:org:example:plan-b

 id="mpeg:dash:client-authentication:2015"

 value="http:// authentication.serverA.com/protocolB?=ServiceSpecificInfoB"/>

<EssentialProperty schemeIdUri="urn:org:example:plan-c"

 id="mpeg:dash:content-authorization:2015"

 value="http://authorization.serverC.com/protocolC?=ContentSpecificInfoC"/>

<EssentialProperty schemeIdUri="urn:org:example:plan-d"

 id="mpeg:dash:content-authorization:2015"

 value="http://authorization.serverD.com/protocolD?=ContentSpecificInfoD"/>

The @id attribute have specific values that indicate the type of the scheme, namely

authentication or authorization with respectively, mpeg:dash:client-

authentication:2015 and mpeg:dash:client-authorization:2015.

	DASH-IF Implementation Guidelines: Token-based Access Control for DASH (TAC)
	Scope
	Disclaimer
	Contents
	1 Introduction
	1.1 General
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Terms & Definitions

	2 Authorization and Authentication Use Cases for DASH Resource Access Control
	2.1 Introduction
	2.2 Mandatory Pre-roll
	2.3 Ad Free Premium Service
	2.4 Service Provider Using CDNs
	2.5 DRM License Retrieval Protection

	3 Access Token Format
	3.1 Introduction
	3.2 Format
	3.3 Transport Encoding

	4 Transport Mechanism for DASH
	4.1 Introduction
	4.2 Access Token Transport over HTTP

	5 Access Token Exchange Protocol and Signalization for DASH
	5.1 Introduction
	5.2 HTTP-based Access Token Usage
	5.3 MPD-based Access Token Usage
	5.4 External Protocol Access Token Usage

	6 Deployment and Security Considerations
	6.1 Access Token Refresh
	6.2 Query string length
	6.3 Safe Delivery of the Access Token
	6.4 Measures Against Replay Attack

	A Annex A – Overview of generic token-based access control concept (informative)
	A.1 Token Concept and Definition
	A.2 Overview of AA System Architecture

	B Annex B – Overview of the signed JSON Web Token and claims from the URI Signing specification (informative)
	B.1 Introduction
	B.2 Enforcement claims
	B.3 Signature
	B.4 Transport claims
	B.5 Signed Token Example from [URISigning]
	B.5.1 Simple Example
	B.5.2 Advanced Example

	C Annex C - Overview of Signaling and Exchange Mechanisms in MPEG DASH (informative)
	C.1 Introduction
	C.2 Extended UrlQueryInfo in ISO/IEC 23009-1:2014 AMD 3:2016
	C.3 Client Authentication and Content Authorization in ISO/IEC 23009-1:2014 AMD 3:2016

