Guidelines for Implementation: DASH-IF SAND Interoperability

December 21, 2018

DASH Industry Forum

Version 2.0
Scope

The scope of this document is to address interoperability aspects and deployment guidelines for Server and Network Assisted DASH (SAND). More specifically, the following aspects of SAND are covered:

• Modes defining subsets of SAND messages and mandatory SAND protocols to use for specific deployment environments
• Capability exchange procedures for DASH clients and DANEs
• Security guidelines for SAND messages delivery
• Procedures on DANE discovery for SAND
Disclaimer

This is a document made available by DASH-IF. The technology embodied in this document may involve the use of intellectual property rights, including patents and patent applications owned or controlled by any of the authors or developers of this document. No patent license, either implied or express, is granted to you by this document. DASH-IF has made no search or investigation for such rights and DASH-IF disclaims any duty to do so. The rights and obligations which apply to DASH-IF documents, as such rights and obligations are set forth and defined in the DASH-IF Bylaws and IPR Policy including, but not limited to, patent and other intellectual property license rights and obligations. A copy of the DASH-IF Bylaws and IPR Policy can be obtained at http://dashif.org/.

The material contained herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable law, this material is provided AS IS, and the authors and developers of this material and DASH-IF hereby disclaim all other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of workmanlike effort, and of lack of negligence.

In addition, this document may include references to documents and/or technologies controlled by third parties. Those third party documents and technologies may be subject to third party rules and licensing terms. No intellectual property license, either implied or express, to any third party material is granted to you by this document or DASH-IF. DASH-IF makes no any warranty whatsoever for such third party material.
Contents

1. GUIDELINES FOR IMPLEMENTATION: DASH-IF SAND INTEROPERABILITY ... 1
2. SCOPE .. 1
3. DISCLAIMER ... 2
4. CONTENTS ... 3
5. REFERENCES ... 4
6. ABBREVIATIONS .. 4

1. INTRODUCTION ... 5

2. SAND MODES .. 7
2.1. GENERAL ... 7
2.2. HOME GATEWAY (OR CONSISTENT QoE/QoS) .. 7
2.3. CDN EDGE (OR PROXY CACHING) .. 8
2.4. NETWORK ASSISTANCE ... 8

3. PROTOCOL USE ... 10

4. CAPABILITY EXCHANGE ... 10
4.1. CLIENTS .. 10
4.2. DANES ... 11

5. SECURITY GUIDELINES FOR SAND MESSAGE DELIVERY ... 12
5.1. GENERAL .. 12
5.2. USE OF HTTPS FOR SAND ... 12
5.3. CORS ASPECTS CONSIDERATIONS ... 12
5.4. PREVENTING MIXED CONTENT GUIDELINES .. 13

6. DANE DISCOVERY PROCEDURES .. 14
References

[8] 3GPP TS 26.247 v15.3.0: "Transparent end-to-end Packet-switched Streaming Service (PSS); Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH)".

Abbreviations

3GPP Third Generation Partnership Project
API Application Programming Interface
CDN Content Delivery Network
CORS Cross-Origin Resource Sharing
DANE DASH-Aware Network Element
DASH Dynamic Adaptive Streaming over HTTP
DNS Domain Name Service
FDIS Final Draft International Standard
FQDN Fully Qualified Domain Name
HTTP Hypertext Transfer Protocol
HTTPS HTTP over TLS
MBMS Multimedia Broadcast and Multicast Service
MPD Media Presentation Description
MPEG Moving Picture Experts Group
PER Parameters Enhancing Reception
PQDN Partially Qualified Domain Name
QoE Quality of Experience
QoS Quality of Service
SAND Server and Network Assisted DASH
TLS Transport Layer Security
1. Introduction

This document addresses interoperability aspects and deployment guidelines for Server and Network Assisted DASH (SAND). Server and Network Assisted DASH (SAND) introduces messages between DASH clients and network elements or between various network elements for the purpose to improve efficiency of streaming sessions by providing information about real-time operational characteristics of networks, servers, proxies, caches as well as DASH client's performance and status. In particular, MPEG SAND aims to enable better cooperation between the DASH client and server operations, and provides the standardized interfaces toward realizing the following benefits for streaming services:

- Streaming enhancements via intelligent caching, processing and delivery optimizations on the server and/or network side, based on feedback from clients on anticipated DASH Segments, accepted alternative DASH Representations and Adaptation Sets, and requested bandwidth.

- Improved adaptation on the client side, based on network/server-side information such as cached Segments, alternative Segment availability, and network throughput/QoS.

SAND constitutes Part 5 of the MPEG DASH specifications, namely ISO/IEC 23009-5 [1]. SAND has reached FDIS stage within MPEG as of June 2016. SAND reference architecture is depicted in Figure 1. Within this architecture, the following four categories of messages, called SAND messages, are exchanged:

- Parameters Enhancing Reception (PER) messages that are sent from DANEs to DASH clients,

- Status messages that are sent from DASH clients to DANEs.
In December 2016, DASH-IF published a position paper on SAND [2]. This paper presents several use cases and applications relevant for SAND, and also describes possible architectures and a few example workflows demonstrating how the various SAND features can help fulfill these use cases. As described in [2], the SAND use cases can be grouped into two main buckets:

(a) DASH operation with proxy caches, including usages such as basic proxy caching, partial representation caching, MBMS-related proxy caching, HTTP proxy cache in a home gateway, next segment caching and multi-CDN offering.

(b) Consistent QoE/QoS for DASH users, including usages such as operator control of DASH in a cellular network, network assistance for DASH streaming and DASH clients collaboration within the home network.

This document describes the following:

- Modes defining subsets of SAND messages and mandatory SAND protocols to use for specific deployment environments
- Normative behaviors on SAND message handling for DANE and DASH client
- Security guidelines for SAND messages delivery
- Procedures on DANE discovery for SAND

Figure 1 – SAND-augmented DASH reference architecture (taken from ISO/IEC 23009-5 [1])

*) PER, metrics and status messages
2. SAND Modes

2.1. General

MPEG SAND defines message formats and exchange protocols between servers, clients, edge proxies and network elements toward enhancing streaming Quality of Experience (QoE). Based on these SAND message formats and protocols, this clause describes SAND modes, each of which comprises of a set of SAND messages and protocols that are required or recommended to be supported in a certain deployment environment.

2.2. Home gateway (or Consistent QoE/QoS)

This mode is intended for enabling content-aware network resource management to provide consistent QoE/QoS for DASH clients. Detailed use cases motivating this SAND mode can be found in clause 2.3 of [2].

The mode comprises the following SAND messages:

- ClientCapabilities, as defined in clause 6.4.7 of ISO/IEC 23009-5 [1]
- DaneCapabilities, as defined in clause 6.5.9 of ISO/IEC 23009-5 [1]
- SharedResourceAssignment, as defined in clause 6.5.3 of ISO/IEC 23009-5 [1]
- SharedResourceAllocation, as defined in clause 6.4.2 of ISO/IEC 23009-5 [1]
- QoSInformation, as defined in clause 6.5.7 of ISO/IEC 23009-5 [1]

DASH clients and DANEs supporting SAND’s ‘Consistent QoE/QoS’ mode shall be capable of parsing the above messages.

Note that this mode contains the same SAND messages as in the 3GPP SAND mode ‘Consistent QoE/QoS’ specified in clauses 13.4 and 13.8 of 3GPP TS 26.247 [8].

DASH clients sending the SharedResourceAllocation message shall include the bandwidth parameter. In addition, the SAND message common envelope shall contain the senderId parameter.

Example workflows for the SAND operation in the ‘Consistent QoE/QoS’ mode can be found in the DASH-IF position paper on SAND [2] and also in clause 13.8 of 3GPP TS 26.247 [8]. In this mode, the DASH client is expected to rely on the information provided by the DANE regarding the available bandwidth. The DASH client can use this information on its bandwidth adaptation scheme. Specifically following the maximum allowed bandwidth allocated by DANE, enables the DASH client to collaborate with other DASH clients in the same network for fair allocation of bandwidth and not competing for the total bandwidth of the local network. Additionally, the information is valuable when the DASH client does not yet have a reliable estimation of the measured bandwidth, for instance when starting-up a new MPD, switching to a new server (e.g. differentBaseUrl). Trusting the DANE will prevent slow quality ramp-up and other sub-optimal quality of experience effects. In addition, the buffer management logic may be less conservative under this mode in order to provide the intended consistent QoE. As a result, an existing DASH client implementation may need to be fine-tuned to make the best use of this DANE-assisted mode, and adaptation of the buffer management logic should be considered when necessary.
2.3. CDN edge (or Proxy Caching)

This mode is intended for enabling streaming enhancements via proxy caching. Detailed use cases motivating this SAND mode can be found in clauses 2.1 and 2.2 of [2].

The mode comprises the following SAND messages:

- **ClientCapabilities**, as defined in clause 6.4.7 of ISO/IEC 23009-5 [1]
- **DaneCapabilities**, as defined in clause 6.5.9 of ISO/IEC 23009-5 [1]
- **AnticipatedRequests**, as defined in clause 6.4.1 of ISO/IEC 23009-5 [1]
- **AcceptedAlternatives**, as defined in clause 6.4.3 of ISO/IEC 23009-5 [1]
- **DeliveredAlternative**, as defined in clause 6.5.8 of ISO/IEC 23009-5 [1]
- **ResourceStatus**, as defined in clause 6.5.1 of ISO/IEC 23009-5 [1]
- **MPDValidityEndTime**, as defined in clause 6.5.4 of ISO/IEC 23009-5 [1]

DASH clients and DANEs supporting SAND’s 'Proxy Caching' mode shall be capable of parsing the above messages.

Note that this mode contains the same SAND messages as in the 3GPP SAND mode 'Proxy Caching' specified in clauses 13.4 and 13.7 of 3GPP TS 26.247 [8].

To realize partial representation caching, PER messages **ResourceStatus**, **DeliveredAlternative** and **MPDValidityEndTime** can be used to inform DASH clients about partially cached representations. Moreover, toward realizing next segment caching, DASH clients can inform the network (i.e., DANE) on anticipated DASH segments, acceptable alternative content, etc. leading to next segment caching, via the use of the status messages **AnticipatedRequests**, **AcceptedAlternatives** and **NextAlternatives**, as defined in clause 6.4.6 of ISO/IEC 23009-5 [1].

Example workflows for the SAND operation in the 'Proxy Caching' mode can be found in the DASH-IF position paper on SAND [2] and also in clause 13.7.4 of 3GPP TS 26.247 [8].

2.4. Network Assistance

The 'Network Assistance' mode is intended for enabling assistance from the network to DASH clients in the client rate adaptation and buffer fill procedures. Network assistance is part of the 'Consistent QoE/QoS' use cases in [2]. The use case consists of providing the DASH client with better estimates of the short-term throughput in a wireless network, so that DASH streaming sessions can better adapt to network conditions and avoid buffer under-run, hence stalling of audio/video playback. More details of the use case motivating this SAND mode can be found in clause 2.3.2 of [2].

The 'Network Assistance' mode consists of two functions:

1) Indicating to the DASH client the highest suitable media rate for the next segment download, based on the available Representations for the content item, and
2) Indicating to the DASH client a temporary delivery boost for occasions when the content playback input buffer on the client risks suffering from under-run.

The second function is optional for the DASH client to support.
The DASH client shall initiate a Network Assistance session with the DANE handling the Network Assistance mode to make the network aware of its possible intended usage in advance of the first usage of the facility. The DASH client shall send the Session initiation message at a convenient stage in the process of preparing to receive media streaming content. When this takes place may be dependent on the nature of the application that streams media content items. The DASH client provides the DANE with the Media server IP address and the Media delivery port number. In response, the DANE may request the DASH client to set up a WebSocket connection to the DANE for all further Network Assistance communications in this session.

Once a Network Assistance session is active, the client may issue a Network Assistance call prior to fetching the next media segment from the server. The Network Assistance call consists of a single logical signalling exchange with DANE. This exchange with the DANE activates either the first of the above functions or a sequence of both functions; the second only if the DASH client was granted access to the function. If the client does not request a delivery boost, then the DANE shall omit the second function in the response to the DASH client.

The DASH client may make a call to the DANE before for each download of a media segment to get a recommendation of the highest suitable media rate, described by the SharedResourceAssignment SAND message parameter 'Bandwidth', that is valid for the next-following duration of time, described by the SharedResourceAssignment SAND message parameter 'validityTime'. The DASH client may use the value of the Bandwidth parameter as input to the rate adaptation algorithm in the selection of the media rate for the next media segment to be downloaded. The DASH client may make a call to the DANE both prior to downloading any media segment, i.e. in the initial phase of the media streaming session, as well as continuously during the media streaming session before every media segment download.

When the DASH client no longer requires Network Assistance facilities, it shall terminate the Network Assistance session. This could be the case for example when the playback of a streamed media content item is stopped, or the converse operation to that which occurred when the session was initiated.

The DANE supporting the 'Network Assistance' (NA) mode is out-of-band, i.e. not located in the media path. The DASH client shall send the NA SAND messages as the body of HTTP requests directly to the NA DANE, using the HTTP POST method to send a Network Assistance message to the DANE.

The 'Network Assistance' mode comprises the following SAND messages:

- **ClientCapabilities**, as defined in clause 6.4.7 of ISO/IEC 23009-5 [1]

- **DaneCapabilities**, as defined in clause 6.5.9 of ISO/IEC 23009-5 [1]

- **SharedResourceAssignment**, as defined in clause 6.5.3 of ISO/IEC 23009-5 [1]

- **SharedResourceAllocation**, as defined in clause 6.4.2 of ISO/IEC 23009-5 [1]

In addition, the following messages are defined, in 3GPP TS 26.247 [8], for the Network Assistance mode:

- **NetworkAssistanceInitiationRequest**, as defined in clause 13.6.5.3.1 of TS 26.247 [8]

- **NetworkAssistanceInitiationResponse**, as defined in clause 13.6.5.3.1 of TS 26.247 [8]
- **NetworkAssistanceTermination**, as defined in clause 13.6.5.3.2 of TS 26.247 [8]
- **SegmentDuration**, as defined in clause 13.6.5.3.3 of TS 26.247 [8]
- **DeliveryBoostRequest**, as defined in clause 13.6.5.3.4 of TS 26.247 [8]
- **DeliveryBoostResponse**, as defined in clause 13.6.5.3.6 of TS 26.247 [8]

DASH clients and DANEs supporting SAND functionality in the 'Network Assistance' mode shall be capable of parsing the above messages with the exception of DeliveryBoostRequest and DeliveryBoostResponse, which are optional.

The detailed description of the 'Network Assistance' mode can be found in clause 13.6 of 3GPP TS 26.247. Network assistance request and response messages may follow the compound message formats described in clause 13.6.6 of TS 26.247. Example workflows for the SAND operation in the 'Network Assistance' mode can be found in the clause 13.6.7 of 3GPP TS 26.247 [8].

3. Protocol Use

HTTP is the minimum mandatory transport protocol that is to be supported by DANEs and SAND-enabled DASH clients. In particular, the mandatory usages of HTTP for carrying SAND messages shall be according to Table 25 of ISO/IEC 23009-5 [1].

In addition, DASH clients supporting SAND functionality as well as DANEs in the 'Network Assistance' and 'Consistent QoE/QoS' modes shall further support the WebSocket protocol specified in IETF RFC 6455 [3], provided that HTTP over TLS (HTTPS) is supported by the respective DASH client or DANE. If HTTP over TLS (HTTPS) is not supported at a DASH client, then the support for the WebSocket protocol by the respective DASH client in the 'Consistent QoE/QoS' or 'Network Assistance' modes is recommended but not mandatory. Similarly, if HTTP over TLS (HTTPS) is not supported at a DANE, then the support for the WebSocket protocol by the respective DANE in the 'Consistent QoE/QoS' or 'Network Assistance' modes is recommended but not mandatory. When WebSockets is supported for the 'Consistent QoE/QoS' mode, as specified in ISO/IEC 23009-5 [1], for advertising the SAND channel over WebSockets, the MPD shall contain a sand:Channel element whose @schemeIdUri is "urn:mpeg:dash:sand:channel:websocket:2016" and WebSocket URI in the @endpoint attribute.

4. Capability Exchange

4.1. Clients

On connection to a DANE, the DASH client may send the status message ClientCapabilities in order to inform the DANE about the SAND mode(s) it supports. The DASH client shall use the messageSetUri parameter with one or more of the following URNs to indicate which SAND mode(s) it supports:

- http://dashif.org/guidelines/sand/modes/qoe to indicate support for the 'Consistent QoE/QoS' mode
• http://dashif.org/guidelines/sand/modes/pc to indicate support for the 'Proxy Caching' mode
• http://dashif.org/guidelines/sand/modes/na to indicate support for the 'Network Assistance' mode

Additionally, if the DASH client supports 3GPP SAND according to TS 26.247, it may signal its support for one or more 3GPP SAND modes by adding the following URNs to the messageSetUri parameter:

• urn:3gpp:dash:sand:messageset:qoe:2016 to indicate support for the 'Consistent QoE/QoS' mode as specified in clauses 13.4, 13.5 and 13.8 of TS 26.247
• urn:3gpp:dash:sand:messageset:pc:2016 to indicate support for the 'Proxy Caching' mode as specified in clauses 13.4, 13.5 and 13.7 of TS 26.247
• urn:3gpp:dash:sand:messageset:na:2016 to indicate support for the 'Network Assistance' mode as specified in clauses 13.4, 13.5 and 13.6 of TS 26.247

NOTE: 3GPP modes imply identical client capabilities to the corresponding DASH-IF modes of SAND, with the only difference being the addition of compliance with the SAND Message Handling Behaviors in Table 13.2 of TS 26.247. Furthermore, 3GPP modes also imply the use of DANE discovery procedures described in clause 13.3 of TS 26.247.

4.2. DANEs

On connection to a DASH client, the DANE may send the PER message DaneCapabilities in order to inform the DASH client about the SAND mode(s) it supports. The DANE shall use the messageSetUri parameter with the following URNs to indicate which SAND mode(s) it supports:

- http://dashif.org/guidelines/sand/modes/pc to indicate support for the 'Proxy Caching' mode
- http://dashif.org/guidelines/sand/modes/na to indicate support for the 'Network Assistance' mode
- http://dashif.org/guidelines/sand/modes/qoe to indicate support for the 'Consistent QoE/QoS' mode

Additionally, if the DANE supports 3GPP SAND according to TS 26.247, it may signal its support for one or more 3GPP SAND modes by adding the following URNs to the messageSetUri parameter:

- urn:3gpp:dash:sand:messageset:qoe:2016 to indicate support for the 'Consistent QoE/QoS' mode as specified in clauses 13.4, 13.5 and 13.8 of TS 26.247
- urn:3gpp:dash:sand:messageset:pc:2016 to indicate support for the 'Proxy Caching' mode as specified in clauses 13.4, 13.5 and 13.7 of TS 26.247
- urn:3gpp:dash:sand:messageset:na:2016 to indicate support for the 'Network Assistance' mode as specified in clauses 13.4, 13.5 and 13.6 of TS 26.247
NOTE 1: 3GPP modes imply identical DANE capabilities to the corresponding DASH-IF modes of SAND, with the only difference being the addition of compliance with the SAND Message Handling Behaviors in Table 13.3 of TS 26.247. Furthermore, 3GPP modes also imply the use of DANE discovery procedures described in clause 13.3 of TS 26.247.

NOTE 2: If the DASH client has already discovered the DANE via the use of mode-specific FQDNs or PQDNs as described in clause 6, it is not necessary to perform the exchange of ClientCapabilities and DaneCapabilities messages on connection to a DANE.

5. Security Guidelines for SAND Message Delivery

5.1. General

MPEG-DASH is commonly delivered over HTTP. In clause 7.2 of [11] on HTTPS and DASH, the implications of using HTTP Over TLS for the delivery of DASH resources are discussed in general. This clause provides additional considerations for deploying SAND using HTTP over TLS.

5.2. Use of HTTPS for SAND

MPEG-DASH SAND does not provide the mean to encrypt the content of the SAND messages. As a result, the use of HTTP over TLS is recommended to protect against man-in-the-middle attack. Indeed, HTTP over TLS ensures that only both end of HTTP transaction have access to the data exchanged preventing a rogue entity between the DASH client and the DANE to read the SAND messages.

SAND provides means for signaling different types of URI:
- URL of SAND messages in HTTP SAND Headers
- HTTP SAND Channel URI in the sand:Channel element in the MPD
- WebSocket SAND Channel URI in the sand:Channel element in the MPD

The MPEG-DASH SAND specification allows the use of the scheme 'https' for the URLs and the scheme 'wss' for the WebSocket URIs which both are their respective protocol identifier over TLS.

5.3. CORS Aspects Considerations

Web browsers are by design to blocking cross-origin requests. These cross-origin requests occur when the user agent (the web browser) loads a resource on a certain origin (e.g. domain-a.com/index.html) while this resource points to other resources located on another origin (e.g. on domain-b.com). In this case, the web browser will block the request to other origin (here domain-b.com) for security reasons. For instance, the request to this other origin (domain-b.com) may be part of a phishing attack to capture sensitive information from the user.

However, it does not mean that all the cross-origin requests are malicious. Therefore, the CORS specification [4] defines a mechanism for a web browser to verify whether a cross-origin request is legitimate. The concept of origin is defined by [5] in technical terms. An Origin is a tuple composed of a scheme, a host and a port of an URI. If two Origins are the same then they have the same scheme, host and port. Note that the scheme is the first part of the URI, e.g. "http", "https", which means that the same domain accessed via the "http" and the "https" schemes constitute two different Origins.
For implementation of SAND in web browser, one must then consider:

- Do the DANE serving SAND messages on HTTP and the DASH service have the same origin?
 - If yes, there is no CORS issues. The DANE has the same origin as the DASH service.
 - If no, then the server hosting the DANE must be configured in such a way that it allows the user agents coming from at least the origin of the DASH service. It may allow more via for example a wildcard, see 5.1 Access-Control-Allow-Origin Response Header in [4].

- Do the DANE signaled in the SAND Channel element by an HTTP URL and the DASH service have the same origin?
 - If yes, there is no CORS issues. The DANE has the same origin as the DASH service.
 - If no, then the HTTP server hosting the DANE should be configured in such a way that it allows the user agents coming from at least the origin of the DASH service. It may allow more via a wildcard, see 5.1 Access-Control-Allow-Origin Response Header in [4].

- Is a DANE signaled in the SAND Channel element by a WebSocket URI?
 - If yes, [4] do not address cross-domain for WebSocket connections. At the time of writing, it appears that most popular web-browsers accept by default all cross-domain connections and no further configuration is required. However, the administrator of the DANE hosted on the WebSocket server may implement a domain validation using the Origin header passed on when the user agent connects to the WebSocket server. This way, user agents not coming from the domain of the DASH service can be immediately denied. Note that HTTP headers are easily changeable and this cannot constitute a method to authenticate legitimate DASH clients.
 - If no, then no further configuration is required.

Note that the CORS aspects related listed above are equivalent to deployments when the DASH service and the DASH resources (MPD and/or segments) are not located on the same domain.

5.4. Preventing Mixed Content Guidelines

There are several advantages to serve the DASH service using HTTP over TLS. Authenticating and/or authorizing user and clients while ensuring the secrecy of credential information is one of them. In order to maintain a high level of security for the entire service, the Mixed Content specification [6] aims at defining the allowed and disallowed combinations of HTTP resources accessible via unsecure and secure protocols in a web page. That is, if a page is accessed via 'https' scheme then the web browser will block requests for resources accessible via 'http'. Note that there are exceptions to the strict blockage of mixed content for passive content such as images and videos provided as HTML element. However, these exceptions do not apply for browser-based DASH clients since these DASH clients fetch the video and audio segments via the XMLHttpRequest API [7] for which any request is considered as active content.

For implementation of SAND in web browser, one must then consider:

- Is the DASH service served using HTTP over TLS?
o If yes, then
 ▪ The DANE in the SAND Channel element should be reachable either by 'https' or 'wss' schemes which are the two secure protocols of respectively HTTP and WebSocket.
 ▪ The SAND message URL provided in the SAND HTTP header should use the 'https' scheme.

 o If no, then there is no constraint of securing the exchange of the SAND messages according to the mixed Content specification.

6. DANE Discovery Procedures

The SAND specification [1] provides the sand:Channel element in the MPD to inform the client about the location and method to communicate with the DANE. That method of DANE discovery may be used for DANEs that are in-band with respect to the media delivery path, i.e. when the MPD server may be aware of SAND functionality in the network.

When the DANE is out-of-band with respect to the media delivery path, as may be the case with the Consistent QoE/QoS DANE, a more generic method for DANE discovery may be used, namely using the DNS protocol. Toward this purpose, the DASH client may use a DANE Fully Qualified Domain Name (FQDN) or a Partially Qualified Domain Name (PQDN) for the DANE when querying the DNS server [9]-[10]. Both of these DANE discovery procedures are optional for the DASH client. The only exception is for the DASH clients supporting 3GPP SAND, which use FQDN-based procedures for DANE discovery as described in clause 13.3 of TS 26.247.

The use of FQDN could be specific to the operator or service provider policy. For example, a 3GPP deployment of SAND uses the following FQDN for the DANE as defined in 3GPP TS 26.247 [8]: "dane.mnc<MNC>.mcc<MCC>.pub.3gppnetwork.org". Clause 13.3 of TS 26.247 also defines targeted DANE FQDNs for querying DANEs supporting specific SAND modes.

Alternatively, the DASH client may use the PQDN to query the DANE. If this is the case, DASH client shall use the PQDN "dane". When receiving a DNS query on the PQDN "dane", the DNS server is expected to respond with the information, including IP address, of the DANE or DANEs that are available to the UE for SAND functionality, according to any of the defined SAND modes.

A sub-domain "dane" is defined to be the PQDN where all DANEs are grouped logically. One or more DANEs that the network implements and provides for use by UEs in that network is accommodated logically under that sub-domain.

If only a single generic DANE is provided, then the response is expected to provide the IP address where the generic DANE is reached.

Specific modes of DANE are identified as each being a sub-domain of the "dane" sub-domain, as follows:

- A Network Assistance DANE, if provided, is located at the PQDN "na.dane".
- A Proxy-Caching DANE, if provided, is located at the PQDN "pc.dane".
- A Consistent QoE/QoS DANE, if provided, is located at the PQDN "qoe.dane";

If a specific mode of DANE is queried, using the specific sub-domain PQDN, then the response informs of the IP address of that mode of DANE only.