

DASH-IF Implementation Guidelines:
Content Protection Information

Exchange Format (CPIX)

September 6th, 2016

DASH Industry Forum

Version 2.0

DASH-IF Content Protection Information Exchange Format v2.0 2

Scope

The scope of this document is to define a Content Protection Information Exchange Format
(CPIX). The CPIX document contains keys and DRM information used for encrypting and
protecting content, and can be used for exchanging this information among entities needing it
in many possibly different workflows for preparing, for example DASH content or HLS
content. The CPIX document itself can be encrypted, signed and authenticated so that its
receivers can be sure that its confidentiality, source and integrity are also protected.

This specification describes version 2.0 of the CPIX document. Changes with respect to
Version 1.0 are:

 The CPIX document structure has been extensively revised in order to make it more
generic so that media formats other than those described in [DASH-IF-IOP] can be
accommodated.

o It no longer mirrors the structure of an MPD file, but rather contains rules to
describe the mapping of streams to content keys.

o It allows for supporting additional DRM signaling schemes by allowing alternative
types of DRM signaling elements.

 Sets of elements can be authenticated by means of XML element signing.
 Versioning has been added so that the history of added elements can be tracked.

DASH-IF Content Protection Information Exchange Format v2.0 3

Disclaimer

This is a document made available by DASH-IF. The technology embodied in this document
may involve the use of intellectual property rights, including patents and patent applications
owned or controlled by any of the authors or developers of this document. No patent license,
either implied or express, is granted to you by this document. DASH-IF has made no search
or investigation for such rights and DASH-IF disclaims any duty to do so. The rights and
obligations which apply to DASH-IF documents, as such rights and obligations are set forth
and defined in the DASH-IF Bylaws and IPR Policy including, but not limited to, patent and
other intellectual property license rights and obligations. A copy of the DASH-IF Bylaws and
IPR Policy can be obtained at http://dashif.org/.

The material contained herein is provided on an "AS IS" basis and to the maximum extent
permitted by applicable law, this material is provided AS IS, and the authors and developers
of this material and DASH-IF hereby disclaim all other warranties and conditions, either
express, implied or statutory, including, but not limited to, any (if any) implied warranties,
duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or
completeness of responses, of workmanlike effort, and of lack of negligence.

In addition, this document may include references to documents and/or technologies
controlled by third parties. Those third party documents and technologies may be subject to
third party rules and licensing terms. No intellectual property license, either implied or
express, to any third party material is granted to you by this document or DASH-IF. DASH-
IF makes no any warranty whatsoever for such third party material.

DASH-IF Content Protection Information Exchange Format v2.0 4

Contents

1 Introduction .. 5

1.1 General ... 5

1.2 References ... 5

1.3 Normative Language ... 5

1.4 Terms & Definitions .. 5

2 Use Cases and Requirements ... 7

2.1 Introduction ... 7

2.2 Overview of the End to End Architecture ... 7

2.3 Use Cases for the Preparation of Content .. 8

2.4 Exchange over an Interface ... 10

2.5 Workflow Examples .. 14

2.6 Requirements ... 17

3 XSD Schema Definition ... 18

3.1 Introduction ... 18

3.2 Structure Overview .. 18

3.3 Hierarchical data model ... 19

4 Key Management ... 34

4.1 Key Encryption in the CPIX document ... 34

4.2 Key Rotation Support (informative) .. 36

5 XML Examples .. 37

6 Transfer Protocol .. 38

DASH-IF Content Protection Information Exchange Format v2.0 5

1 Introduction

1.1 General

This document defines a container allowing the exchange between entities of content
protection information typically made of keys used for encrypting content and any associated
DRM specific information. There may be one or several keys and these keys may be protected
by one or several DRMs, hence there may be one or several DRM specific information. There
is no assumption on the entities exchanging this information but it is not expected that a client
device will use this exchange format. The goal is to allow entities involved in the content
preparation workflow to get the content protection information so that, for example a DASH
MPD can be generated with all content protection information.

Because the defined container is not made for a specifically defined content preparation
workflow but is generic, conformance is not considered to be a critical part of CPIX. As a
consequence, no conformance is defined for this specification.

1.2 References

[DASH] ISO/IEC 23009-2:2014 Information technology - Dynamic adaptive streaming over
HTTP (DASH) - Part 1: Media presentation description and segment formats.

[DASH-IF-IOP] Guidelines for Implementation: DASH-IF Interoperability Points, version
3.3, June 2016.

[DASH-attributes] http://www.dashif.org/identifiers/protection/

[CENC] ISO/IEC 23001-7:2016, Third Edition, Information technology – MPEG systems
technologies – Part 7: Common encryption in ISO base media file format files.

[RFC6030] IETF RFC 6030, “Portable Symmetric Key Container (PSKC)”, October 2010.

[CPIX-XML] http://dashif.org/guidelines/

[XML-DSIG] XML Signature Syntax and Processing (Second edition),
https://www.w3.org/TR/xmldsig-core/

[XML-ENC] XML Encryption Syntax and Processing, http://www.w3.org/TR/xmlenc-core/

1.3 Normative Language

See [DASH-IF-IOP] section 2.3.

1.4 Terms & Definitions

Content: One or more audio-visual elementary streams and the associated MPD if in DASH
format.

Content Key: A cryptographic key used for encrypting part of the Content.

Content Protection: The mechanism ensuring that only authorized devices get access to
Content.

DRM Signaling: The DRM specific information to be added in Content for proper operation
of the DRM system when authorizing a device for this Content. It is made of proprietary
information for licensing and key retrieval.

Document Key: A cryptographic key used for encrypting the Content Key(s) in the CPIX
document.

PSSH: “Protection System Specific Header” box that is part of an ISO_BMFF file. This box
contains DRM Signaling.

DASH-IF Content Protection Information Exchange Format v2.0 6

Content Key Context: The portion of a media stream which is encrypted with a specific
Content Key.

DASH-IF Content Protection Information Exchange Format v2.0 7

2 Use Cases and Requirements

2.1 Introduction

Content Keys and DRM Signaling, a.k.a. content protection information need to be created
and exchanged between some system entities when preparing content. The flows of
information are of very different nature depending on where Content Keys are created and
also depending on the type of Content that can be either On-Demand or Live.

This section presents different use cases where such exchanges are required. Section 2.2 is an
overview of the general context in which exchange of content protection information is
happening, Section 2.3 describes some workflows for content creation and section to go in the
details of how content protection information can be exchanged over an interface between two
entities.

2.2 Overview of the End to End Architecture

This informative section gives a general overview of the context in which content protection
information need to be exchanged between entities in the backend. It completes section 7.5 of
[DASH-IF-IOP] by putting more emphasis on the backend aspects.

This informative section takes DASH content as an example for providing more specific and
clear understanding, but this can be generalized to other streaming formats, such as HLS.

Figure 1: Logical roles that exchange DRM information and media.

Figure 1 shows logical entities that may send or receive DRM information such as media
keys, asset identifiers, licenses, and license acquisition information. A physical entity may
combine multiple logical roles, and the point of origin for information, such as media keys
and asset identifiers, can differ; so various information flows are possible. This is an
informative example of how the roles are distributed to facilitate the description of workflow
and use cases. Alternative roles and functions can be applied to create conformant content.
The different roles are:

Content
Provider

Encoder

Packager
Encryptor

Manifest

Creator

Player &
DRM Client

DRM
Service

DRM Information

DASH-IF Content Protection Information Exchange Format v2.0 8

Content Provider – A publisher who provides the rights and rules for delivering protected
media, also possibly source media (mezzanine format, for transcoding), asset identifiers, key
identifiers (KID), key values, encoding instructions, and content description metadata.

Encoder – A service provider who encodes media in a specified set of formats with different
bitrates and resolutions etc., possibly determined by the publisher.

Packager / Encryptor – A service provider who encrypts and packages media, inserting
DRM signaling and metadata into the media files. In the case of DASH packaging, this
consists of adding the default_KID in the file header ‘tenc’ box, initialization vectors and
subsample byte ranges in track fragments indexed by ‘saio’ and ‘saiz’ boxes, and possibly
one or more ‘pssh’ boxes containing license acquisition information (from the DRM
Provider). Tracks that are partially encrypted or encrypted with multiple keys require sample
to group boxes and sample group description boxes in each track fragment to associate
different KIDs to groups of samples. The Packager could originate values for KIDs, Content
Keys, encryption layout, etc., then send that information to other entities that need it,
including the DRM Provider and Streamer, and probably the Content Provider. However, the
Packager could receive that information from a different point of origin, such as the Content
Provider or DRM Provider.

Manifest Creator – A service provider which generates the media manifests which group the
various media files into a coherent presentation. These manifest files may contain DRM
signaling information. For DASH, the MPD Creator is assumed to create one or more types of
DASH MPD files, and provide indexing of Segments and/or ‘sidx’ indexes for download so
that players can byte range index Subsegments. The MPD must include descriptors for
Common Encryption and DRM key management systems, and should include identification
of the default_KID for each AdaptationSet element, and sufficient information in UUID
ContentProtection Descriptor elements to acquire a DRM license. The default_KID is
available from the Packager and any other role that created it, and the DRM specific
information is available from the DRM Provider.

DRM Client – Gets information from different sources: media manifest files, media files, and
DRM licenses.

DRM Service – The DRM Provider creates licenses containing a protected Content Key that
can only be decrypted by a trusted client.

The DRM Provider needs to know the default_KID and DRM SystemID and possibly other
information like asset ID and player domain ID in order to create and download one or more
licenses required for a Presentation on a particular device. Each DRM system has different
license acquisition information, a slightly different license acquisition protocol, and a
different license format with different playback rules, output rules, revocation and renewal
system, etc. For DASH, the DRM Provider typically must supply the Streamer and the
Packager license acquisition information for each UUID ContentProtection Descriptor
element or ‘pssh’ box, respectively.

The DRM Service may also provide logic to manage key rotation, DRM domain management,
revocation and renewal and other content protection related features.

2.3 Use Cases for the Preparation of Content

2.3.1 Introduction

This informative section describes some workflows for content preparation where content
protection information is exchanged between or carried through some entities.

DASH-IF Content Protection Information Exchange Format v2.0 9

As for the previous section, this informative section takes DASH content as an example for
providing more specific and clear understanding, but this can be generalized to other
streaming formats, such as HLS.

2.3.2 On-Demand Content

The flow for preparing On-Demand Content requires that a media asset is available non-
encrypted, ideally in the maximum resolution so that an adaptive streaming presentation can
be prepared.

One possible flow is that a Content Management System (CMS) creates a workflow ensuring
that DASH Content is prepared. The CMS makes the file available to a transcoder. The
transcoder outputs the segmented files that can be encrypted. The encryption engine either
generates the Content Keys or requests them from a DRM system. The DRM system also
provides PSSH boxes to be added to the media files, as well as ContentProtection elements to
be added to the MPD file. When the encrypted DASH Content is ready, the MPD is generated
by a “MPD Generator”. It asks the DRM system the required DRM signaling to be added in
the MPD. DASH content is then uploaded by the CMS on a CDN making it available to users.
In parallel, editorial metadata is exported to the Portal, enabling access to users. DRM
systems receive relevant metadata information that needs to be included in the license (output
controls) when creating a license.

This flow is summarized in Figure 2 where arrows show the flow of information.

Figure 2: Example of workflow for On-Demand Content preparation.

2.3.3 Live Content

Metadata is regularly imported with new or updated information. Metadata can include
different type of information on the EPG events such as the duration of the event, the list of
actors, the output controls usage rules, a purchase window…

Content is continuously received, transcoded in the desired format and encrypted if any type
of entitlement is required.

One or many Content Keys can be used if key rotation is used or not. Such setting is static and
configuration is hard-coded in the relevant equipment, hence a Content Management System
is not required for this workflow to operate. As for Content on-Demand, keys are generated
by the encryption engine or the DRM system and are available to all DRM systems and the
encryption engine at the right moment depending on how these keys are used. The encoder
requests to the DRM systems their specific signaling, if any, to be added in the MPD.

Encrypted segments and the media manifest are uploaded on a CDN making it available to
users.

Transcoder Encryption
Engine

MPD
Generator CDN

DRM System

Content Management
System

Portal

DASH-IF Content Protection Information Exchange Format v2.0 10

Metadata is exported to the Portal, enabling access to users. DRM systems receive relevant
metadata information that needs to be included in the license (output controls).

This flow is summarized in Figure 3 where arrows show the flow of information.

Figure 3: Example of workflow for Live Content preparation.

2.3.4 Catch-up

Live Content has already been encoded and encrypted (if required) for Live unicast. All DRM
systems have access to the keys.

Additional metadata may be required for ensuring that events are effectively available in
catch-up. These are made available to the Portal and some Live events are identified as being
able to be replayed as On-demand. Optionally, the operator may choose to replace the
advertising content with targeted ads.

2.3.5 Electronic Sell Through

In order to make available its Content in a defined and controlled quality, a content owner is
preparing it. Preparation includes transcoding to the desired format and encryption of the
resulting segments. The content owner is generating also the Content Key(s). At the end of the
process, Content is ready and stored along with the Content Key(s).

Later the content owner distributes the prepared Content to multiple locations, in addition
metadata describing it is also made available to retail platforms so that Content becomes
salable on multiples Portals. In parallel, the content owner distributes the Content Key(s) to
any authorized DRM system. A DRM system is authorized if it is one used by one of the
Portal that has this Content for sale.

2.4 Exchange over an Interface

2.4.1 Introduction

This informative section gives details on how content protection information is exchanged or
transferred over an interface between two or more entities.

2.4.2 Content Key Delivery to One Entity

In the simplest use case content protection information is made of a Content Key one entity
sends some Content Keys to the other entity. This use case is summarized in Figure 4.

Figure 4: Content Key delivery to one entity.

Transcoder Encryption
Engine

MPD
Generator CDN

DRM System

Content Management
System

Portal

Content Key handling
component

Content Key handling
component Content protection information

 Content Keys

DASH-IF Content Protection Information Exchange Format v2.0 11

The primary data model carried by content protection information document is made of one to
many Content Keys with their associated KeyIDs. Any context or meaning is attributed
externally. The document simply serves as a standard way to serialize content keys for
delivery.

2.4.3 Secure Content Key Delivery to Several Entities

This use case is an extension of use case presented in Section 2.4.2 and is compatible with the
use cases presented in the following sections. This use case is summarized in Figure 5

Figure 5: Secure Content Key Delivery to Several Entities.

The entities exchanging Content Keys may want to rely upon a trust relationship that ensures
authentication and privacy of communications. Such a mechanism can be provided by the
communication protocol used to deliver the document but the document can also be self-
protected. CPIX documents can deliver Content Keys in encrypted and digitally signed form,
enabling confidentiality, authentication and nonrepudiation.

In situations with more than one recipient, the document allows each one to decrypt the
Content Keys using its own private key.

2.4.4 Content Key Delivery with Usage Rules

These use cases are extension of use case presented in Section 2.4.2 and present different
rules that can be applied on a Content Key when delivered to an entity. Each usage rule
defines a set of filters that are used to define a Content Key Context. If a rule match is found,
the Content Key referenced by the usage rule is to be used to encrypt the Content Key Context
defined by the rule.

A scenario where multiple Content Keys can be mapped to a single Content Key Context shall
be considered invalid– a CPIX document must always match exactly zero or one Content
Keys to any Content Key Context.

2.4.4.1 Label Filter

This use case adds information to Content Keys that specifies how they are to be mapped to
labelled Content Key Contexts, where the labeling system has been pre-agreed between the
producer and consumer of the CPIX document. This use case is summarized in Figure 6.

Figure 6: Content Key Delivery with Label Filter.

For example, labels might be the IDs of DASH adaptation sets or, for more compatibility with
formats other than DASH, names of media files/directories or input values for arbitrary
custom logic.

Content Key handling
component

Content Key handling
component Content protection information

 Content Keys (encrypted)
 Digital signature Content Key handling

component

Content Key handling
component

Content Key handling
component Content protection information

 Content Keys
 Label Filters

DASH-IF Content Protection Information Exchange Format v2.0 12

The recipient will use the added information to map Content Keys to Content Key Contexts
defined by labels.

2.4.4.2 Key Period Filter

This use case adds information to Content Keys that specifies how they are to be mapped to
key periods, a.k.a. crypto-periods for Content Key rotation. The mapping is accomplished by
defining key periods and mapping Content Keys to any number of key periods. This use case
is summarized in Figure 7.

Figure 7: Content Key Delivery with Period Filter.

The recipient will use the added information to map Content Keys to time periods.

2.4.4.3 Policy-based Filters

This use case associates policy-based information with Content Keys, constraining how they
define Content Key Contexts. Policy based filters are, for example, video or audio stream
attributes and bitrate ranges. This use case is summarized in Figure 8.

Figure 8: Content Key Delivery with Policy-based Filters.

The recipient will use the added information to map Content Keys to Content Key Contexts
according to the defined policy.

Having no policy in some dimension means that the Content Key Context is not constrained
in that dimension. For example, if the HDR policy is not specified, the Content Key Context
may include both HDR and non-HDR media

2.4.5 Content Key Delivery with DRM Signaling

This use cases is an extension of the use case presented in Section 2.4.2 and is compatible
with the usage rules presented in Section 2.4.4.

This use case adds DRM System Signaling information to each Content Key. The recipient
may embed this signaling into the data streams it generates. This use case is summarized in
Figure 9.

Figure 9: Content Key Delivery with DRM Signaling.

The primary data model carried by content protection information document needs then to
include zero to many DRM system signaling elements, each element consisting of a DRM

Content Key handling
component

Content Key handling
component Content protection information

 Content Keys
 Key Period Filters

Content Key handling
component

Content Key handling
component Content protection information

 Content Keys
 Policy-based Filters

Content Key handling
component

Content Key handling
component Content protection information

 Content Keys
 DRM System Signaling

DASH-IF Content Protection Information Exchange Format v2.0 13

system ID, some signaling information such as for example signaling data for a DASH
manifest or a HLS playlist or signaling data for an ISOBMFF file.

While the CPIX format primarily targets DASH and includes only elements necessary to carry
the DRM system signaling data required by DASH, the document format is designed to be
generic. The use of 3rd party extensions enable the inclusion of DRM system signaling in
forms suitable for other media delivery technologies (e.g. HTTP Live Streaming).

The recipient may use the part of signaling data that it understands and knows how to embed
into its output, ignoring signaling data that targets other media delivery technologies.

2.4.6 Incremental Update and Extension of the Document

This use case illustrates the usage of the content protection information document in a
realistic workflow comprising multiple cooperating components that require a standardized
data format for content protection information exchange. It is shown in Figure 10.

Figure 10: Incremental Update and Extension of the Document.

Each component participating in such a workflow is the authority on a particular aspect. For
example, the Key Server manages Content Keys and usage rules and may define the key
periods, the DRM System knows how to define the correct DRM Signaling and the
Encryption Engine might want to inform the Packager what representations the Content Keys
actually got mapped to (the Packager might not have enough information to resolve usage
rules based on detailed metadata, so the Encryption Engine could define a new set of usage
rules that are simple enough for the Packager to understand, e.g. by making use of label
filters).

Key Server Policy Engine Content protection information

 Content Keys (signed by Key Server) encrypted
for Encryption Engine

 With usage rules (signed by Key Server)
 Document signed by Key Server

DRM System Content protection information

 Content Keys (signed by Key Server) encrypted for
Encryption Engine

 With updated usage rules (signed by Policy Engine)
 Document signed by Policy Engine

Encryption Engine
Content protection information

 Content Keys (signed by Key Server) encrypted for
Encryption Engine

 With usage rules (signed by Policy Engine)
 With DRM system signaling (signed by DRM System)
 Document signed by DRM System

Packager Content protection information

 Content Keys (signed by Key Server) encrypted for
Encryption Engine

 With updated usage rules (signed by Encryption Engine)
 With DRM system signaling (signed by DRM System)
 Document signed by Encryption Engine

DASH-IF Content Protection Information Exchange Format v2.0 14

Encryptor Content Keys

DRM
System

DRM
System

As the document travels in the workflow, each component adds the elements containing the
content protection items it generates (key periods, usage rules, Content Keys, DRM signaling,
etc), making it suitable for the next component that will make use of it. After each
modification, the added elements may be signed to maintain a chain of trust on each set of
elements individually. The document in its entirety may also be signed to authenticate the
document as a whole.

Note that in the above example, the Content Key material itself is encrypted for the
Encryption Engine. Despite the fact that many other components participate in the workflow,
they do not have access to Content Keys.

2.5 Workflow Examples

2.5.1 Encryptor Producer and Encryptor Consumer

There are many workflows that are possible, depending on which entities provide information
in the CPIX document, and which entities consume that information. Two simple single-
producer, single-consumer examples are illustrated below:

Figure 11: Encryptor Producer. Figure 12: Encryptor Consumer.

All workflows require that content protection information and Content Keys be exchanged
between two or more entities. In the examples in Figure 11 and Figure 12 the entities are the
Encryptor and DRM System:

• The Encryptor Producer example allows, in this case, the Encryptor to generate Content
Keys and to push them to one or many DRM systems. The Encryptor could expect to
receive from the DRM systems some DRM Signaling.

• The Encryptor Consumer example allows the Encryptor to pull Content Keys and DRM
Signaling from a DRM system. In this case, Content Keys are generated by the DRM
System.

The document allows supporting both workflows above in addition to other workflows not
explicitly described here.

Implementations are recommended to encrypt the Content Keys as they are very sensitive
data.

Implementations are recommended to sign any part of the document they generate, as well as
the document as a whole, to enable recipients to verify the authenticity of the received data.

Before exchanging key information in a secure manner the entities which exchange key
material must know about each other and share public keys so that one entity could encrypt
data and the other entity could decrypt it. This important step of Trust establishment is out of
the scope of this document.

Encryptor Producer

Encryptor
Content Keys

and DRM
Signaling

DRM
System

DASH-IF Content Protection Information Exchange Format v2.0 15

This informative section shows a possible workflow for securing the exchange of the key
information between entities when the Encryptor generates the Content Keys. In this example,
shown in Figure 11, the Encryptor is the entity which is taking responsibility for generating
the Content Keys, protecting them and pushing them to the DRM Systems.

• The first step is the Trust establishment. Public keys must be exchanged between two or
more entities (the Encryptors and the DRM Systems) prior exchanges.

• Once the Trust is established and the necessary associated key material is shared between
entities, Content Keys can be exchanged. The Encryptor is encrypting these keys using
DRM Systems public keys. The DRM Systems can decrypt using their own private key.

• The Encryptor provides crypto material required to uniquely identify the entity capable of
decrypting the media.

All these steps are summarized in Figure 13.

Figure 13: Encryptor Producer example steps.

Encryptor Consumer

This informative section shows a possible workflow for securing the exchange of the key
information between entities when the DRM System generates the Content Keys. In this
model, shown in Figure 12, the Encryptor can pull documents directly from a DRM System.
In this case, the DRM System is generating Content Keys and is encrypting them for a secure
delivery to the Encryptor.

• As in the case of the Encryptor Producer model, the first step is the Trust establishment.
Public keys must be exchanged between two or more entities (the Encryptors and the
DRM System) prior exchanges.

• The DRM System will use the public key of the Encryptor to encrypt keys to be inserted
in the document and will send it to Encryptor.

• The Encryptor can decrypt the Content Keys using its private key.

All these steps are summarized in Figure 14.

The Encryptor and DRM Systems
exchange public keys

The Encryptor constructs and secures
the document with DRM Systems public

keys

The Encryptor sends the protected
document to the DRM Systems

Each DRM System decrypts the
document with its own private key

DASH-IF Content Protection Information Exchange Format v2.0 16

Figure 14: Encryptor Consumer example steps.

Multiple Producers

This informative section illustrates that it is possible to have more complex workflows than
those previously illustrated. In one such example, for DASH content, a media packager might
define the types of streams in the presentation, an Encryptor might generate the Content Keys,
a DRM System might generate other DRM Signaling, An Encryptor and an MPD Generator
might be the consumers of the final document. In such workflows, the document gets passed
from entity to entity in sequence, with each entity adding top-level elements, and recording
the update.

Figure 15: Multiple Producers example.

• The first step is the Trust establishment. Public keys must be exchanged between two or
more entities prior to exchanges.

• Once the Trust is established and the necessary associated key material is shared between
entities, Content Keys can be exchanged.

• The Packager provides identification of the receivers and the various stream encoding
criteria (usage rules) in version 1 of the document.

• The Encryptor adds key information in version 2 of the document. These elements only
contain Keys and no DRM information.

• The DRM System imports the Content Keys stored in the document, and adds its own
information in version 3 of the document, which is the finalized version.

• The Encryptor extracts content protection related information from the document to be
embedded in the media (e.g. PSSH boxes).

The Encryptor and DRM System
exchange public keys

The Encryptor sends a document request
message to the DRM System

The DRM System constructs and secures
the document with the public key of the
Encryptor and sends the response back

The Encryptor decrypts the document
using its private key

Packager Encryptor DRM System CPIX document
v2

CPIX document v3 (final)

MPD Generator

CPIX document
v1

DASH-IF Content Protection Information Exchange Format v2.0 17

• The MPD Generator also extracts content protection related information from the
document to be embedded in the MPD document (e.g. PSSH boxes, key IDs).

All these steps are summarized in Figure 16.

Figure 16: Multiple Producers example steps.

2.6 Requirements

It shall be possible to exchange Content Key(s) and DRM Signaling between entities involved
in Content preparation workflows, an example of such interface where the exchange shall be
possible is between a DRM system and the encryption engine.

It shall be possible that the manifest generator receives DRM signaling for several DRM
systems and/or content formats

Update of Content Key(s) shall be possible at periodic time or based on events. Some period
of time could be in the clear (no encryption).

It shall allow generating MPD conformant to [DASH-IF-IOP].

Content Key(s) shall be secured over the interface.

Entities exchanging content protection information should be authenticated.

The Packager, Encryptor and DRM System
exchange public keys

The Packager constructs version 1 of the
document with identification of the receivers and
the expected structure of content and sends the

document to the Encryptor

The Encryptor adds key information, encrypting
the Key’s with the DRM System’s public key,

and sends version 2 of the document to the DRM
System

The DRM System decrypts the keys with its
public key, and imports them into its database.

Next it adds its own information, and sends
version 3 of the document to the Encryptor and

MPD Generator

The Encryptor encrypts the content,
and embeds items from the content

protection into the content

The MPD Generator generates the
MPD, adding items from the

content protection into the MPD

DASH-IF Content Protection Information Exchange Format v2.0 18

3 XSD Schema Definition

3.1 Introduction

This section describes the Content Protection Information eXchange (CPIX) format to provide
a framework to securely exchange Content Key(s) and DRM Signaling between different
system entities (see Section 2). This is an XML file that is described by the XSD provided in
[CPIX-XML]. This section describes in details elements part of the schema.

3.2 Structure Overview

The structure is articulated around Content Keys and the accompanying material. The
document contains all the information required for allowing any entitled entity to get access to
or add in the Content Keys and either consume or add material, such as time constraint, DRM
information to the CPIX document. The same XML file can be shared between several
receiving entities. Hence, each one must be able to decrypt keys and must be properly
identified.

Taking this into account, the CPIX document contains lists of elements:

 DeliveryDataList: This list contains instances of DeliveryData, each of which
describes an entity entitled to decrypt Content Keys contained in the CPIX document.

 ContentKeyList: This list contains instances of ContentKey, each of which contains
a Content Key used for encrypting media.

 DRMSystemList: This list contains instances of DRMSystem, each of which contains the
signaling data to associate one DRM system with one Content Key.

 ContentKeyPeriodList: This list contains instances of ContentKeyPeriod, each of
which defines a time period that may be referenced by the key period filters included
in Content Key usage rules.

 ContentKeyUsageRuleList: This list contains instances of ContentKeyUsageRule,
which maps a Content Key to one or more Content Key Contexts.

 UpdateHistoryItemList: This list contains instances of UpdateHistoryItem, each
of which contains an update version number and an identifier of the entity which
produced the update. Other elements in the document are linked to a specific update
by update version number (@updateVersionNumber).

 Signature: Each instance of this element contains a digital signature [XML-DSIG]
over either the entire document or a subset of XML elements.

The Content Keys can be encrypted inside the XML file using the public keys of the
recipients, identified in the DeliveryData elements. The XML file also allows storing the
Content Keys in the clear, in which case the security of the Content Keys is contingent on the
security of the communication channel used to deliver the CPIX document to the recipients.

Figure 17 shows the first elements and a high level view of the structure. Detailed description
of the structure is given in the following sections.

DASH-IF Content Protection Information Exchange Format v2.0 19

Figure 17: Content Protection Information Exchange Format high level view.

3.3 Hierarchical data model

In all tables of this section, the following convention is used

DASH-IF Content Protection Information Exchange Format v2.0 20

 Elements are bold and the “Use” values are <minOccurs>…<maxOccurs>
(N=unbounded).

 Attributes are non-bold preceded with an @ and the “Use” values are
M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally
Mandatory.

The XSD schema for this model is provided in [CPIX-XML].

3.3.1 CPIX

Element or Attribute Use Description

CPIX The root element that carries the Content Protection
Information for a set of media assets.

 @id O It specifies an identifier for the Media Presentation. It is
also referred as the Asset or content ID. It is recommended
to use an identifier that is unique within the scope in
which this file is published.

 @name O The name of the Presentation.

DeliveryDataList 0…1 A container for DeliveryData elements.

If not present, Content Keys in the document are delivered
in the clear, without encryption.

ContentKeyList 0…1 A container for ContentKey elements.

DRMSystemList 0…1 A container for DRMSystem elements.

If not present, the document does not contain any DRM
system signaling data.

ContentKeyPeriodList 0…1 A container for ContentKeyPeriod elements.

ContentKeyUsageRuleList 0…1 Container for ContentKeyUsageRule elements.

If not present, the document does not define Content Key
Contexts and an external mechanism is required for
synchronizing the content creation workflow.

UpdateHistoryItemList 0…1 Container for UpdateHistoryItem elements.

Signature 0…N Digital signature as defined in [XML-DSIG]. Each
signature signs either the full document or any set of
elements within the CPIX document.

Every digital signature must contain an X.509 certificate
identifying the signer and the associated public key.

DASH-IF Content Protection Information Exchange Format v2.0 21

3.3.2 DeliveryDataList and DeliveryData

Element or Attribute Use Description

DeliveryDataList

 @id O It specifies an identifier for the element. It is
recommended to use an identifier that is unique within the
scope in which this CPIX document is published.

 @updateVersion O It has the same value as the @id of the
UpdateHistoryItem element giving details on when the
DeliveryDataList element was added.

DeliveryData 0…N It contains the required information allowing defining
which entities can get access to the Content Keys
delivered in this document.

There is one DeliveryData element per entity capable of
accessing encrypted Contents Keys stored in this
document. If this element is not present, then the Content
Keys are in the clear in the file.

DASH-IF Content Protection Information Exchange Format v2.0 22

Element or Attribute Use Description

DeliveryData

 @id O It specifies an identifier for the element. It is
recommended to use an identifier that is unique within the
scope in which this CPIX document is published.

 @name O It is the name of the Delivery Data.

 @updateVersion O It has the same value as the @id of the
UpdateHistoryItem element giving details on when the
DeliveryData element was added.

DeliveryKey 1 Contains an X.509 certificate that identifies the intended
recipient and the public key that was used to encrypt the
document key.

Refer to Section 4.1 for a description of the key
management within the CPIX document.

DocumentKey 1 Contains the key that was used for encrypting any Content
Key stored in a ContentKey element. The document key
is encrypted using the public key listed in the recipient’s
X.509 certificate.

Refer to Section 4.1 for a description of the key
management within the CPIX document.

MACMethod 0…1 Identifies the MAC algorithm and contains the MAC key
used to implement authenticated encryption of Content
Keys. The MAC key is encrypted using the public key
listed in the recipient’s X.509 certificate.

Refer to Section 4.1 for a description of the key
management within the CPIX document.

Description 0…1 A description of the element.

SendingEntity 0…1 The name, of the entity generating this CPIX document.

SenderPointOfContact 0…1 Contact information, such as an email address, of the
Sender.

ReceivingEntity 0…1 The name, of the entity capable of decrypting Content
Keys in this CPIX document.

DASH-IF Content Protection Information Exchange Format v2.0 23

3.3.3 ContentKeyList and ContentKey

Element or Attribute Use Description

ContentKeyList

 @id O It specifies an identifier for the element. It is
recommended to use an identifier that is unique within the
scope in which this CPIX document is published.

 @updateVersion O It has the same value as the @id of the
UpdateHistoryItem element giving details on when the
ContentKeyList element was added.

ContentKey 0…N Contains all information on a Content Key used to encrypt
one or more Content Key Contexts.

Element or Attribute Use Description

ContentKey

DASH-IF Content Protection Information Exchange Format v2.0 24

 @id O Specifies an identifier for the element. It is recommended
to use an identifier that is unique within the scope in
which this CPIX document is published.

 @Algorithm O This has the semantics defined in [RFC6030] and is made
optional in this extension.

 @kid M The unique identifier of the Content Key.

Extends keyType defined in [RFC6030]. The attribute @id and @Algorithm are
optional in this extension. The key it contains can be encrypted. If it is
encrypted, it is encrypted with the key that is under the DocumentKey
element part of the DeliveryData. Refer to Section 4.1 for a description
of the key management within the CPIX document.

3.3.4 DRMSystemList and DRMSystem

Element or Attribute Use Description

DRMSystemList

DASH-IF Content Protection Information Exchange Format v2.0 25

 @id O It specifies an identifier for the element. It is
recommended to use an identifier that is unique within the
scope in which this CPIX document is published.

 @updateVersion O It has the same value as the @id of the
UpdateHistoryItem element giving details on when the
DRMSystemList element was added.

DRMSystem 0…N DRM system signaling information of a DRM system
associated with a Content Key.

The DRMSystem element contains all information on a DRM system that can be used for
retrieving licenses for getting access to content. This specification defines elements for DRM
system signaling in DASH, ISOBMFF and/or HLS formats. Implementations may extend
CPIX documents with additional elements to provide DRM system signaling information for
other formats.

Element or Attribute Use Description

DRMSystem

 @id O It specifies an identifier for the element. It is recommended
to use an identifier that is unique within the scope in which
this CPIX document is published.

 @systemId M This is the unique identifier of the DRM system. Values are
defined on [DASH-attributes].

 @kid M References the @kid field of the Content Key this
DRMSystem element applies to.

 @updateVersion O It has the same value as the @id of the UpdateHistoryItem
element giving details on when the DRMSystem element was
added.

PSSH 0…1 This is the full PSSH box that is added in the ISOBMFF. If
a KeyPeriodFilter is defined on the Content Key, then the
PSSH box goes under the moof box otherwise, the PSSH
box goes under the moov box.

This element is present only when the media content is in
the ISOBMFF format.

DASH-IF Content Protection Information Exchange Format v2.0 26

ContentProtectionData 0…1 This is the full XML element to be added in the MPD under
the ContentProtection element for this DRM.

This element is present only when the content is in the
DASH format.

URIExtXKey 0…1 This is the full data to be added in the URI parameter of the
EXT-X-KEY tag of a HLS playlist.

This element is present only when the content is in the HLS
format.

* Additional elements may be present containing signaling
data for other media formats.

3.3.5 ContentKeyPeriodList and ContentKeyPeriod

Element or Attribute Use Description

ContentKeyPeriodList

 @id O It specifies an identifier for the element. It is
recommended to use an identifier that is unique within the
scope in which this CPIX document is published.

 @updateVersion O It has the same value as the @id of the
UpdateHistoryItem element giving details on when the
ContentKeyPeriodList element was added..

ContentKeyPeriod 0…N One ContentKeyPeriod element for each period of time.

DASH-IF Content Protection Information Exchange Format v2.0 27

Element or Attribute Use Description

ContentKeyPeriod

 @id O It specifies an identifier for the element. It is
recommended to use an identifier that is unique within the
scope in which this CPIX document is published.

 @index O Numerical index for the key period. Mutually exclusive
with @start and @end

 @start O Wall clock (Live) or media time (VOD) for the start time
for the period. Mutually inclusive with @end, and mutually
exclusive with @index.

 @end O Wall clock (Live) or media time (VOD) for the end time
for the period. Mutually inclusive with @start, and
mutually exclusive with @index.

When @start and @end are present, the interval is defined by [@start,@end), meaning that
the key is been used at time @start but not at time @end.

3.3.6 ContentKeyUsageRuleList and ContentKeyUsageRule

Element or Attribute Use Description

ContentKeyUsageRuleList

 @id O It specifies an identifier for the element. It is
recommended to use an identifier that is unique within
the scope in which this CPIX document is published.

DASH-IF Content Protection Information Exchange Format v2.0 28

 @updateVersion O It has the same value as the @id of the
UpdateHistoryItem element giving details on when the
ContentKeyUsageRuleList element was added.

ContentKeyUsageRule 0…N A rule which defines a Content Key Context.

Element or Attribute Use Description

ContentKeyUsageRule

 @id O It specifies an identifier for the element. It is recommended
to use an identifier that is unique within the scope in which
this CPIX document is published.

 @kid M It specifies the @kid field of the Content Key this
ContentKeyUsageRule element applies to.

KeyPeriodFilter 0…N It defines period of time constraints for the Content Key
identified by @kid.

This filters links ContentKey and ContentKeyPeriod

elements.

LabelFilter 0…N It defines a label association for the Content Key identified
by @kid.

VideoFilter 0…N It defines video constraints to be associated with the
Content Key identified by @kid.

This filter can only be used on media content of type video

AudioFilter 0…N It defines audio constraints to be associated with the
Content Key identified by @kid.

This filter can only be used on media content of type audio.

BitrateFilter 0…N It defines bitrate constraints to be associated with the
Content Key identified by @kid.

* Additional elements may be present containing proprietary
filters

DASH-IF Content Protection Information Exchange Format v2.0 29

3.3.7 Usage Rules Filters

3.3.7.1 Introduction

There can be several filters defined within a single ContentKeyUsageRule. In this case, all
rules apply identically, the entity generating the ContentKeyUsageRule element or adding a
new rule is responsible for ensuring that they do not contradict each other. A set of rules that
would match multiple Content Keys to a single Content Key Context is invalid.

If more than one of a particular type of filter (e.g. KeyPeriodFilter) is present within a
ContentKeyUsageRule, then they are first aggregated with a logical OR operator. After that,
different types of filters are aggregated with a logical AND operator. For example, a rule that
defines a label filter for “stream-1”, a label filter for “steam-2” and a video filter would be
matched as (“stream-1” OR “stream-2”) AND video.

A usage rule shall be considered invalid if it contains a child element whose meaning is
unknown (i.e. a filter of an unknown type) or which cannot be processed for any other reason
(e.g. VideoFilter@minPixels is defined but the implementation does not know the pixel
count of the video samples). This condition must be treated as a fatal error in the processing
of the CPIX document.

3.3.7.2 KeyPeriodFilter

Element or Attribute Use Description

KeyPeriodFilter

 @periodId M This references a ContentKeyPeriod element by its @id
attribute. The filter will only match samples that belong to
the referenced key period.

DASH-IF Content Protection Information Exchange Format v2.0 30

3.3.7.3 LabelFilter

Element or Attribute Use Description

LabelFilter

 @label M The filter will only match samples that carry a matching
label. The exact meaning of labels is implementation-
defined and must be agreed upon in advance by the
producer and consumer of the CPIX document.

3.3.7.4 VideoFilter

Element or Attribute Use Description

VideoFilter If present, even without any attributes, the filter will only
match video samples.

 @minPixels O The filter will only match video samples that contain at
least this many pixels (encoded width x height before
considering pixel/sample aspect ratio). The default value is
0 (zero).

 @maxPixels O The filter will not match video samples that contain more
than this number of pixels (encoded width x height before
considering pixel/sample aspect ratio). The default value is
MAX_UINT32.

 @hdr O Boolean value indicating whether the matching video
stream is encoded in HDR.

 @wcg O Boolean value indicating whether the matching video
stream is encoded in WCG.

 @minFps O Minimum nominal number of frames per second for the
video stream. For interlaced video, this is half the number
of fields per second.

 @maxFps O Maximum nominal number of frames per second for the
video stream. For interlaced video, this is half the number
of fields per second.

When @minPixels and @maxPixels are present, the interval is defined by [@minPixels,@
maxPixels], meaning that the filter is used for content with video samples that contain

DASH-IF Content Protection Information Exchange Format v2.0 31

@minPixels pixels and is used for content with video samples that contain @maxPixels
pixels.

When @minFps and @maxFps are present, the interval is defined by (@minFps,@ maxFps],
meaning that the filter is not used for content with nominal FPS equal to @minFps but is used
for content with nominal FPS equal to @maxFps.

3.3.7.5 AudioFilter

Element or Attribute Use Description

AudioFilter If present, even without any attributes, the filter will only
match audio samples.

 @minChannels O The filter will only match audio samples that contain at
least this many channels. The default value is 0 (zero).

 @maxChannels O The filter will not match audio samples that contain more
than this number of channels. The default value is
MAX_UINT32.

When @minChannels and @maxChannels are present, the interval is defined by
[@minChannels,@ maxChannels], meaning that the filter is used for content with audio
samples that have @minChannels audio channels and is used for content with audio samples
that have @maxChannels audio channels.

3.3.7.6 BitrateFilter

Element or Attribute Use Description

BitrateFilter

DASH-IF Content Protection Information Exchange Format v2.0 32

 @minBitrate O The filter will only match samples from streams with a
nominal bitrate in Mb/s of at least this value. The default
value is 0 (zero).

At least one of @minBitrate and @maxBitrate must be
specified.

 @maxBitrate O The filter will not match samples from streams with a
nominal bitrate in Mb/s that exceeds this value. The default
value is MAX_UINT32.

At least one of @minBitrate and @maxBitrate must be
specified.

When @minBitrate and @maxBitrate are present, the interval is defined by
[@minBitrate,@ maxBitrate], meaning that the filter is used for content with bitrate of
@minBitrate and is used for content with bitrate of @maxBitrate.

3.3.8 UpdateHistoryItemList and UpdateHistoryItem

Element or Attribute Use Description

UpdateHistoryItemList

 @id O It specifies an identifier for the element. It is
recommended to use an identifier that is unique within
the scope in which this CPIX document is published.

UpdateHistoryItem 1…N It contains metadata about an update made to the CPIX
document. There should be one entry for each instance in
which an entity updated the document.

Element or Attribute Use Description

UpdateHistoryItem

DASH-IF Content Protection Information Exchange Format v2.0 33

 @id O It specifies an identifier for the element. It is recommended
to use an identifier that is unique within the scope in which
this CPIX document is published.

 @index M This is the version number for the document update. Each
UpdateHistoryItem element contains a unique @index

value. It is a monotonically increasing number, starting at
value 1.

 @source M This is the identifier for the entity which performed the
document update.

 @date M This is the date and time when the document update was
performed.

DASH-IF Content Protection Information Exchange Format v2.0 34

4 Key Management

4.1 Key Encryption in the CPIX document

4.1.1 Introduction

The CPIX document allows exchanging Content Keys in the clear but this is not a
recommended method as it relies on the security of the communication mechanism used to
deliver the CPIX document to the recipients, which may not be sufficient to adequately
protect the Content Keys.

Content Keys can be delivered encrypted within the document itself and in this case, a key
hierarchy is used for an efficient encryption avoiding duplication of encrypted content and
expensive encryption methods. This section describes the mechanism that shall be used when
encryption of the Content Keys in the document is used.

4.1.2 Key Hierarchy in the CPIX Document

The document contains the following keys:

Content Keys

Each ContentKey Element contains one Content Key that is used for encrypting an asset or
crypto period of an asset. Typically, for Common Encryption as supported in [DASH-IF-
IOP], these keys are 128-bit keys used with the AES cipher.

Document Key

For every CPIX document, a Document Key is created. It is used for encrypting every
Content Key. The Document Key is a 256-bit key and the encryption algorithm used for
encrypting every Content Key is AES. The Document Key is part of each DeliveryData
element. It is itself encrypted in the document, using the public key of each recipient.

Delivery Keys

Each DeliveryData element identifies a Delivery Key , which is a public key from a key pair
owned by the intended recipient. The Delivery Key is identified in the DeliveryData element
by including the X.509 certificate of the intended recipient. The Delivery Key is used for
encrypting the Document Key using an algorithm that is described within the CPIX
document, according to [XML-ENC].

Figure 18 gives the schema of encryption of the different keys when there are several
DeliveryData elements and several ContentKey Elements. The Document Key allows
reducing the numbers of ContentKey Elements as the Content Key they contain are all
encrypted by the same Document Key.

DASH-IF Content Protection Information Exchange Format v2.0 35

Figure 18: Key hierarchy encryption in the CPIX document.

4.1.3 Authenticated Encryption

MAC Key

For every CPIX document, a MAC Key is created. It is used to calculate the MAC of every
encrypted Content Key. The DeliveryData element identifies the MAC algorithm and
provides the MAC Key, encrypted with the Delivery Key, for each recipient.

Authenticated Encryption of Content Keys

Implementations SHALL provide a MAC for every encrypted Content Key and SHALL
verify the MAC before attempting to decrypt any encrypted Content Key. The purpose of the
MAC is to protect against cryptographic vulnerabilities in the receiving application; it is not
used as a general purpose authentication mechanism.

The MAC is calculated over the data in the CipherValue element (the concatenated IV and
encrypted Content Key) and stored in the ValueMac element under the Secret element for
each encrypted Content Key.

4.1.4 Digital Signature

Every element in the document that has an @id attribute can be signed according to [XML-
DSIG]. Furthermore, the document (including any other signatures) can be signed as a whole.

Upon loading a CPIX document, implementations SHOULD verify that signatures are present
on entities that are expected to be signed and verify all digital signatures that are present.
Implementations SHOULD refuse to process a document if expected signatures are missing or
if the signatures cannot be verified or if the signers are not trusted as authoritative sources for
the signed data.

Implementations SHOULD sign any elements that recipients wish to authenticate. Note that
modifying any signed data will require any signatures on the data to be removed and/or re-
applied – this requires the appropriate consideration and trust model design in content
processing workflow creation (out of scope of this specification).

4.1.5 Mandatory Algorithms

Table 1 gives the identification of the algorithms that shall be used for encryption, signature,
MAC creation.

Usage algorithm

Delivery Key 1 in
DeliveryData_1

encrypts

DeliveryKey2 in
DeliveryData_2

Document Key in
DeliveryData_2

Document Key in
DeliveryData_1

encrypts

Content Key 1 in
ContentKey_1

Content Key 2 in
ContentKey_2

encrypts

DASH-IF Content Protection Information Exchange Format v2.0 36

Content Key wrapping AES256-CBC, PKCS #7 padding

Encrypted key MAC HMAC-SHA512

Document Key wrapping RSA-OAEP-MGF1-SHA1

Digital signature RSASSA-PKCS1-v1_5

Digital signature digest SHA-512

Digital signature canonicalization Canonical XML 1.0 (omits comments)

Table 1: Algorithms mandatory to support.

For RSA, the recommended minimum key size is 3072 bits and is it not recommended to use
certificates that are signed using SHA-1.

4.2 Key Rotation Support (informative)

A CPIX document can contain content protection information for multiple crypto-periods, or
period of time for content encrypted using key rotation. In this case, the document shall
contain one or more ContentKey elements, one per crypto-period which the document covers.
Each ContentKey element contains the key material for a single crypto-period. The crypto-
period itself is identified by the ContentKeyPeriod element, that includes @start/@end or
@index attributes.

Key rotation may be supported in complex workflows, with one entity requesting DRM
signaling for multiple crypto periods, and another entity providing the requested information
(keys, DRM system-specific information for the crypto period, etc).

Some key rotation implementations may store the Content Keys within the PSSH data. These
keys are usually wrapped (encrypted) with another key, which is delivered to the client as part
of the content license. This ‘root’ key should never be encoded in the CPIX document;
instead the CPIX document shall only contain the Content Keys in the ContentKey elements.

DASH-IF Content Protection Information Exchange Format v2.0 37

5 XML Examples

The zip file available on DASH-IF web site contains four examples of XML files [CPIX-
XML]. The XML example files are syntactically correct but do not contain real data. For
examples, signature and encrypted data are dummy data. Examples with valid data can be
found at https://github.com/Axinom/cpix-test-vectors.

Encrypted Keys

This example shows a CPIX document where keys can be decrypted by two entities
(“Authorization Service 1234” and “Authorization Service 5678”). Both are identified by
their X509 certificates.

The Content Key is encrypted by the Document Key, the Document Key is therefore
encrypted two times (once for Authorization Service 1234 and once for Authorization Service
5678).

In term of DRMs, there are two different DRMs that can be used for accessing content. There
are therefore two DRMSystem elements.

Clear Keys

This example shows a CPIX document where keys are not encrypted. It can be read by any
entity and therefore does not contain DeliveryData elements.

The Content Key is available as plain data.

In term of DRMs, there are two different DRMs that can be used for accessing the content.
There are therefore two DRMSystem elements.

Multiple Updates

This example, consisting of multiple files (v1…v3), shows a CPIX document which has been
built up by successive updates by various entities as illustrated in the example in section 2.4.6.
The document has three UpdateHistoryItem within it referencing the entities which
performed the updates. Various elements in the document reference the UpdateHistoryItem
for the update in which they were added by UpdateVersion.

It contains two Content Keys. The keys can be decrypted by the entity “DRM System 1234”.

The document contains information for a single DRM system, so it only contains a single
DRMSystem element.

Key Rotation

This example shows a CPIX document where keys can be decrypted by two entities
(“Authorization Service 1234” and “Authorization Service 5678”). Both are identified by
their X509 certificates.

It contains two Content Keys for two cryptoperiods. Two ContentKeyPeriod elements with
by their start and end times are added, each referencing one ContentKey element using a
PeriodFilter element. The Content Key is encrypted by the Document Key, the Document
Key is therefore encrypted two times (once for Authorization Service 1234 and once for
Authorization Service 5678).

In addition, the document contains DrmSystem elements for the two DRM systems.

DASH-IF Content Protection Information Exchange Format v2.0 38

6 Transfer Protocol

The preferred method of exchange of CPIX documents between entities is through a RESTful
API. This API is defined as follows:

[BaseURL]/copyProtectionData/{{CPIX_ID}}
Where [BaseURL] is the scheme and host(e.g. https://acme-drm-service.com) of the target
resource.
Method: POST
Behaviour: The request to create copyProtectionData for an encryptor.
RequestBody:
Element: //CPIX
Definition: A CPIX element.
ResponseBody:
Element: //CPIX
Definition: A CPIX element.

—
[BaseURL]/copyProtectionData/{{CPIX_ID}}
Where [BaseURL] is the scheme and host(e.g. https://acme-drm-service.com) of the target
resource.
Method: GET
Behaviour: Return copyProtectionData for the referenced CPIX_ID.
RequestBody:
Element: NONE
ResponseBody:
Element: //CPIX
Definition: A CPIX element.

—
[BaseURL]/copyProtectionData/{{CPIX_ID}}
Where [BaseURL] is the scheme and host(e.g. https://acme-drm-service.com) of the target
resource.
Method: PUT
Behaviour: Update copyProtectionData referenced by the CPIX_ID
RequestBody:
Element: //CPIX
Definition: A CPIX element.
ResponseBody:
Element: NONE
—
[BaseURL]/copyProtectionData/{{CPIX_ID}}
Where [BaseURL] is the scheme and host(e.g. https://acme-drm-service.com) of the target
resource.
Method: DELETE
Behaviour: Delete/purge copyProtectionData referenced by the CPIX_ID.
RequestBody:
Element: NONE
ResponseBody:
Element: NONE

