

CHANGE REQUEST

 DASH-IF IOP CR rev 3 Current version: 4.1

Status: Draft Internal Review X Community Review Agreed

Title: Leap second handling clarifications

Source: DASH-IF IOP

Supporting
Companies:

Axiom, Qualcomm Incorporated

Category: C Date: 2018-01-16
 Use one of the following categories:

C (correction)
A (addition of feature)
B (editorial modification)

Reason for change: Ambiguities with regard to leap second handling were pointed out in

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/161

Summary of change: Clarifies how to handle leap seconds and how to avoid common pitfalls

Consequences if not
approved:

DASH packagers and clients may experience noninteroperable behavior during
leap seconds

Sections affected: 4.7

Other comments:

Disclaimer: This document is not yet final. It is provided for public review until the deadline
mentioned below. If you have comments on the document, please submit
comments by one of the following means:

- at the github repository https://github.com/Dash-
IndustryForum/IOP/issues (public at
https://gitreports.com/issue/haudiobe/DASH-IF-IOP)

- dashif+iop@groupspaces.com with a subject tag [LEAP], or
Please add a detailed description of the problem and the comment.

Based on the received comments a final document will be published latest by the
expected publication date below, integrated in a new version of DASH-IF IOP if
the following additional criteria are fulfilled:

- All comments from community review are addressed
- The relevant aspects for the Conformance Software are provided
- Verified IOP test vectors are provided

Commenting Deadline: March 31st, 2018

Expected Publication: June 30th, 2018

https://github.com/Dash-IndustryForum/IOP/issues
https://github.com/Dash-IndustryForum/IOP/issues

[Modify] 4.7.2

[Remove page 90 lines 13-15 that talk about leap seconds.]

[New] 4.7.4 Leap Second Handling

A leap second occurs on the UTC timeline every 18 months on average. Leap seconds are regular seconds representing

a span of real time, not a mere mathematical trick. There are 61 real seconds in the minute and 3 601 in the hour and 86

401 in the day that contains a leap second.

The MPD availability timeline is calculated on the UTC timeline. Service providers and clients need to be aware of all

leap seconds that take place in order to calculate period and segment availability times in an interoperable manner.

Many platforms do not provide built-in time measurement mechanisms that are aware of leap seconds, nor do they

provide a list of leap seconds. If no platform-provided leap second aware mechanism for measuring real time is

available, one should be synthesized using a public list of leap seconds[x] that is regularly updated.

Table 1. Leap second unaware clocks measure only 1 second of time between 2016-12-31 23:59:59 and 2017-01-

01 00:00:00, whereas in reality 2 seconds exist.

True UTC time Unix timestamp Timestamp from most “UTC” timekeeping APIs

2016-12-31 23:59:59 1483228799 2016-12-31 23:59:59

2016-12-31 23:59:60 1483228800 2017-01-01 00:00:00

2017-01-01 00:00:00 1483228800 2017-01-01 00:00:00

The above table illustrates the primary source of problems in leap second handling – many commonly used APIs,

including those based on Unix time and its Microsoft equivalent, are not aware of the existence of leap seconds.

Timestamps returned from commonly used APIs either freeze for a second or repeat a second in order to track true UTC

time, depending on implementation.

The following are some common use cases where UTC time must be referenced by DASH packagers and clients:

• MPD@availabilityStartTime is a moment on the UTC timeline

• MPD@publishTime is a moment on the UTC timeline

• Clients may schedule segment presentation on the UTC timeline

Timing logic in the MPD often operates on durations of real time that act as offsets from moments on the UTC timeline:

• Period@start is an offset in real time (including leap seconds) from
MPD@availabilityStartTime

• Segment availability time is an offset in real time (including leap seconds) from the
Period start time

• Segment durations are the span of real time (including leap seconds) that elapses
between the availability of consecutive Segments

• Clients may schedule Segment presentation by adding durations of previously
presented Segments to an initial moment on the UTC timeline

For accurate timekeeping, all time measurement in packagers and clients should operate in real time and be aware of

leap seconds. Specifically, timing logic must:

1. Include leap seconds in any Period and Segment durations calculated by subtracting
an end and start timestamp.

2. Perform Segment scheduling either on a leap second aware UTC timeline or on an
independent timeline where only the Period is explicitly scheduled and Segments
themselves are simply ordered in sequence.

As it is not possible to accurately convert from leap second unaware time to leap second aware time during leap

seconds, such conversions should be avoided. For example, instead of calculating Period duration by subtracting the

Period start timestamp from the Period end timestamp, a more accurate result may be achieved by adding the durations

of all Segments in the Period to the Period start timestamp. The Period start timestamp may in turn equal the (accurately

calculated) end timestamp of the previous Period or be fixed to a moment in real time that is known not to be a leap

second.

XML processing APIs on platforms that are not leap second aware are generally unable to handle datetime strings that

contain a seconds value of 60 (e.g. availabilityStartTime="2016-12-31T23:59:60Z"). Packagers should not write

datetime values representing moments in leap seconds into datetime-typed fields in the MPD and should instead round

the values up to the nearest non-leap second (e.g. availabilityStartTime="2017-01-01T00:00:00Z" corresponding to

above example). If subsecond-accurate timing is desired, rounding of MPD@availabilityStartTime should be avoided

by delaying MPD availability so that it does not start within a leap second.

Any timestamps or durations used for Segment scheduling in the MPD must include time spent in leap seconds. The

below example illustrates the mapping of template-based and timeline-based Segment scheduling to real time.

Given the following segment template for a period starting at 2016-12-31 23:59:59.000Z, we can calculate the

following table for Segment scheduling.

<SegmentTemplate duration=”500” timescale=”1000” startNumber=”1” media=”$Number$.mp4” />

$Number$ Segment

timeline

timestamp

UTC timestamp Unix timestamp “UTC” timestamp as used

by common APIs

1 0 2016-12-31 23:59:59.000 1483228799[.0] 2016-12-31 23:59:59.000

2 500 2016-12-31 23:59:59.500 1483228799[.5] 2016-12-31 23:59:59.500

3 1000 2016-12-31 23:59:60.000 Cannot represent Cannot represent

4 1500 2016-12-31 23:59:60.500 Cannot represent Cannot represent

5 2000 2017-01-01 00:00:00.000 1483228800[.0] 2017-01-01 00:00:00.000

As you can see, it is not possible to accurately represent the scheduled moment of Segments 3 and 4 using leap second

unaware timekeeping APIs. Packagers and clients must either use a leap second aware clock or only reference such

Segments in manner relative to other Segments, without ever calculating an absolute timestamp for them.

Furthermore, any duration calculations based on the leap second unaware timestamps would incorrectly conclude that

1.5 seconds elapsed during playback of the above 2.5 seconds worth of Segments. This error can be overcome by

explicitly adding any “lost seconds” to the duration, as long as the leap second unaware start/end timestamps

themselves are not within a leap second.

The same principles apply when using time-based segment template or a segment timeline.

[New] 4.7.4.1 Synthesizing a leap second aware clock

On platforms that do not have a leap second aware clock, one can be created based on a list of leap seconds[x] that is

combined with a leap second unaware clock that returns Unix timestamps1.

1 Other types of clocks can also be substituted but Unix timestamps are used here because the Unix epoch of 1970-01-01 00:00:00 is conveniently
before all existing leap seconds.

To calculate the current leap second aware time Treal from a Unix timestamp Tunix on a common timescale of TS ticks

per second, with a list of Unix timestamps L each of which indicates a leap second has passed2, execute the following

algorithm:

1. Calculate the count of elapsed leap seconds as A = Count(L <= Tunix)
2. Calculate the leap second aware timestamp as Treal = Tunix + A * TS

To convert from leap second aware timestamps back to leap second unaware timestamps, execute the following

algorithm:

1. Calculate the UTC timestamp of the start of each leap second as Ln
realstart = Ln +

Count(L < Ln) * TS
2. Determine the leap seconds that started before the current timestamp as Lactive =

Lrealstart <= Treal
3. Determine how much of any ongoing leap second has not yet elapsed as Dremaining =

Max(0, Max(Lactive) + TS - Treal)
4. Calculate the leap second unaware Unix timestamp as Tunix = Treal - Count(Lactive) +

Dremaining

This synthetic clock returns timestamps that include elapsed leap seconds, thereby ensuring measuring duration D = Tend

– Tstart includes any time spent in leap seconds.

While the synthetic clock can account for leap seconds in arithmetic, it cannot return real time values that are

themselves within a leap second. This results in the following inaccuracy:

1. With a 1 tick per second timescale, time stands still for 1 second during a leap second,
after which it jumps past the leap second, never entering it.

2. With a finer timescale (e.g. 1000 ticks per second), the moments in the second
immediately after a leap second elapse twice, once during the leap second and once
after the leap second. In other words, there occurs a moment where the clock rolls
back by one second.

To prevent the above inaccuracy from affecting calculations, implementations should, whenever possible, measure time

by adding elapsed segment durations (which are in real time and thus include time spent in leap seconds) to an initial

real-time timestamp returned from the synthetic clock.

Converting leap second aware timestamps back to leap second unaware timestamps is inaccurate if the former is

currently within a leap second. In such a case, the value is rounded up to the nearest non-leap second.

 [New references]

[x] . https://www.ietf.org/timezones/data/leap-seconds.list

2 Note that the list of leap seconds [x] needs processing in order to transform it to the suitable form, as it does not use the Unix epoch for timestamps

and the adjustment values also include an additional 10-second offset between TAI and UTC. For example, the timestamp 2303683200 in [x]

references 1973-01-01 00:00:00 UTC which is 94694400 seconds from the Unix epoch and the corresponding adjustment value 12 in [x]
means that there are 2 leap seconds between this moment and the Unix epoch (after subtracting the 10 second TAI-UTC offset).

https://www.ietf.org/timezones/data/leap-seconds.list

