
DASH-IF implementation guidelines:
restricted timing model

https://dashif.org/Guidelines-TimingModel/

GitHub
GitHub
Inline In Spec

DASH Industry Forum

Table of Contents

1 Purpose

2 Interpretation

3 Disclaimer

4 DASH and related standards
4.1 Structure of a DASH presentation

4.2 Terminology cross-reference across standards

4.3 Terminology choices in this document

5 Goal of the interoperable timing model

Commit Snapshot, 24 October 2024

This version:

Issue Tracking:

Editor:

https://dashif.org/
https://dashif.org/
https://dashif.org/Guidelines-TimingModel/
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues
https://github.com/Dash-Industry-Forum/Guidelines-TimingModel/issues

6 MPD timeline

7 Presentation timing characteristics

8 Period timing
8.1 First and last period timing in static presentations

8.2 First and last period timing in dynamic presentations

9 Representation timing

9.1 Sample timeline

9.2 Referencing media segments

9.2.1 Necessary segment references in static presentations

9.2.2 Necessary segment references in dynamic presentations

9.2.3 Removal of unnecessary segment references

9.3 Alignment of periods and representations

10 Clock drift is forbidden
10.1 Workarounds for clock drift

11 Media segments

12 Period connectivity
12.1 Segment reference duplication during connected period transitions

12.2 Period continuity

13 Dynamic presentations
13.1 Clock synchronization

13.2 Leap seconds

13.3 Availability

13.4 Time shift buffer

13.5 Presentation delay

13.6 MPD updates

13.6.1 MPD snapshot validity

13.6.1.1 In-band MPD validity events

13.6.2 Adding content to the MPD

13.6.3 Removing content from the MPD

13.6.4 End of live content

13.7 MPD refreshes

13.7.1 Conditional MPD downloads

14 Segment loss handling

15 Timing of stand-alone IMSC1 and WebVTT text files

16 Forbidden techniques

17 Examples
17.1 Offer content with imperfectly aligned tracks

17.2 Split a period

17.3 Change the default_KID

18 Segment addressing modes
18.1 Indexed addressing

18.2 Structure of the index segment

18.2.1 Moving the period start point (indexed addressing)

18.3 Explicit addressing

18.3.1 Moving the period start point (explicit addressing)

18.4 Simple addressing

18.4.1 Inaccuracy in media segment timing when using simple addressing

18.4.2 Moving the period start point (simple addressing)

18.4.3 Converting simple addressing to explicit addressing

19 Large timescales and time values

20 Representing durations in XML

Index
Terms defined by this specification

References
Normative References

Informative References

Issues Index

The guidelines defined in this document support the creation of interoperable services
for high-quality video distribution based on MPEG-DASH and related standards. These
guidelines are provided in order to address DASH-IF members' needs and industry best
practices. The guidelines support the implementation of conforming service offerings as
well as DASH client implementations.

The restricted timing model constrains the ordinary timing model defined in [DASH]
primarily by disallowing gaps in presentations, thereby increasing the compatibility of
DASH services with devices that do not have robust support for playback of content with
gaps.

This timing model also provides editorial flexibility for the presentation author by
allowing new periods to be started at any point. This is achieved by:

In addition to defining the constraints for a restricted timing model, this document
attempts to explain and illustrate many DASH timing concepts that often cause
confusion, without constraining them further than already done by DASH-IF general
guidelines, [DASH] or [CMAF].

While alternative interpretations may be equally valid in terms of standards
conformance, services and clients created following the guidelines defined in this
document can be expected to exhibit highly interoperable behavior between different
implementations.

This part of the DASH-IF implementation guidelines is published as a stand-alone
document for editorial reasons. Refer to the master document to understand the
context in which this document should be viewed.

1. Purpose§

1. Strictly defining the period boundary rules on the DASH service side.

2. Permitting fleixble behavior from clients in how they transition between periods (to
account for implementation limitations).

NOTE: Some alternative timing model interpretations significantly restrict the
ability of content authors to define period boundaries.

Requirements in this document describe service and client behaviors that DASH-IF
considers interoperable.

If a service provider follows these requirements in a published DASH service, the
published DASH service is likely to experience successful playback on a wide variety of
clients and exhibit graceful degradation when a client does not support all features used
by the service.

If a client implementer follows the client-oriented requirements described in this
document, the DASH client will play content conforming to this document provided that
the client device media platform supports all features used by a particular DASH service
(e.g. the codecs and DRM systems).

This document uses statements of fact when describing normative requirements
defined in referenced specifications such as [DASH] and [CMAF]. References are typically
provided to indicate where the requirements are defined.

[RFC2119] statements (e.g. "SHALL", "SHOULD" and "MAY") are used when this
document defines a new requirement or further constrains a requirement from a
referenced document.

There is no strict backward compatibility with previous versions - best practices change
over time and what was once considered sensible may be replaced by a superior
approach later on. Therefore, clients and services that were conforming to version N of
this document are not guaranteed to conform to version N+1.

2. Interpretation§

EXAMPLE 1
Statement of fact:

New or more constrained requirement:

¶

A DASH presentation is a sequence of consecutive non-overlapping periods
[DASH].

Segments SHALL NOT use the MPEG-TS container format.

This is a document made available by DASH-IF. The technology embodied in this
document may involve the use of intellectual property rights, including patents and
patent applications owned or controlled by any of the authors or developers of this
document. No patent license, either implied or express, is granted to you by this
document. DASH-IF has made no search or investigation for such rights and DASH-IF
disclaims any duty to do so. The rights and obligations which apply to DASH-IF
documents, as such rights and obligations are set forth and defined in the DASH-IF
Bylaws and IPR Policy including, but not limited to, patent and other intellectual property
license rights and obligations. A copy of the DASH-IF Bylaws and IPR Policy can be
obtained at http://dashif.org/.

The material contained herein is provided on an "AS IS" basis and to the maximum
extent permitted by applicable law, this material is provided AS IS, and the authors and
developers of this material and DASH-IF hereby disclaim all other warranties and
conditions, either express, implied or statutory, including, but not limited to, any (if any)
implied warranties, duties or conditions of merchantability, of fitness for a particular
purpose, of accuracy or completeness of responses, of workmanlike effort, and of lack
of negligence.

In addition, this document may include references to documents and/or technologies
controlled by third parties. Those third party documents and technologies may be
subject to third party rules and licensing terms. No intellectual property license, either
implied or express, to any third party material is granted to you by this document or
DASH-IF. DASH-IF makes no any warranty whatsoever for such third party material.

Note that technologies included in this document and for which no test and
conformance material is provided, are only published as a candidate technologies, and
may be removed if no test material is provided before releasing a new version of this
guidelines document. For the availability of test material, please check
http://www.dashif.org.

DASH (dynamic adaptive streaming over HTTP) [DASH] is a technology for adaptive
media delivery. Initially published by ISO/IEC in April 2012, it has been continually
updated, with the 4th edition published in 2020.

3. Disclaimer§

4. DASH and related standards§

CMAF (common media application format) [CMAF] is a media container format based on
ISO Base Media File Format [ISOBMFF]. It defines data structures for media delivery
compatible with DASH and other similar technologies such as [HLS]. Initially published
by ISO/IEC in 2018, it has been updated in 2019 with the publishing of the 2nd edition.

This document is based on the 4th edition DASH [DASH] and 2nd edition CMAF [CMAF]
specifications.

DASH together with related standards and specifications is the foundation for an
ecosystem of services and clients that work together to enable audio/video/text and
related content to be presented to end-users.

Figure 1 This document connects DASH with international standards and industry specifications.

[DASH] defines a highly flexible set of building blocks that needs to be constrained to
ensure interoperable behavior in common scenarios. The necessary media container
constraints are largely defined by [CMAF] and [DASH-CMAF]. This document defines
further constraints to limit DASH features to those that are considered appropriate for
use in interoperable clients and services.

Clients consuming DASH content will need to interact with the host device’s media
platform. The guidelines in this document assume that the media platform implements
APIs that are equivalent to Media Source Extensions [media-source] and Encrypted
Media Extensions [encrypted-media]. API level compatibility is not required but
equivalent features are expected.

This document was generated in close coordination with [DVB-DASH]. The features are
aligned to the extent considered reasonable. The tools and features are aligned to the
extent considered reasonable. In addition, DASH-IF worked closely with ATSC to develop
a DASH profile for ATSC3.0 for broadcast distribution [ATSC3].

[DASH] specifies the structure of a DASH presentation, which consists primarily of:

Figure 2 Relationships of primary DASH data structures and the standards they are defined in.

The MPD is an XML file that follows a schema defined in [DASH]. Various 3rd party
extension points are defined in the XML schema. This document defines some
extensions, as do other industry specifications.

[DASH] defines two data container formats, one based on [ISOBMFF] and the other
[MPEG2TS]. However, only the former is used in modern solutions. This document only
supports services using the [ISOBMFF] container format.

[CMAF] is a constrained media format based on [ISOBMFF], specifically designed for
adaptive streaming. This document requires the use of [CMAF] compatible data
containers. The requirements for the usage of CMAF with DASH are defined by
[DASH-CMAF].

4.1. Structure of a DASH presentation§

1. The manifest or MPD, which describes the content and how it can be accessed.

2. Data containers that clients will download during playback of a presentation in
order to obtain media samples.

The data container format defines the physical structure of the following components of
a presentation:

Different documents often use different terms to refer to the same structural
components of DASH presentations. A quick cross-reference of terms commonly found
causing confusion is presented here:

[DASH] [CMAF] [ISOBMFF]

(media) segment,
subsegment

CMAF segment, CMAF
fragment

initialization segment CMAF header

index segment, segment
index

segment index box
(sidx)

Figure 3 Cross-reference of closely related terms in different standards.

NOTE: The relationship to [CMAF] is constrained to the container format, as
primarily expressed by [DASH-CMAF]. In particular, there is no requirement to
conform to [CMAF] media profiles.

1. Each representation contains an initialization segment.

2. Each representation contains any number of media segments.

3. Some representations may contain an index segment, depending on the addressing
mode used.

NOTE: HLS (HTTP Live Streaming) [HLS] is an adaptive media delivery technology
similar to DASH that also supports CMAF. Under certain constraints, content
conforming to CMAF can be delivered to clients using both DASH and HLS.

4.2. Terminology cross-reference across standards§

This document is intended to be a set of guidelines easily understood by solution
designers and developers. In the interest of ease of understanding, some important
adjustments in terminology are made compared to the underlying standards, described
here.

[DASH] has the concept of "segment" (URL-addressable media object) and "subsegment"
(byte range of URL-addressable media object), whereas [CMAF] does not make such a
distinction. This document uses [CMAF] terminology, with the term "segment" in this
document being equivalent to "CMAF segment". The term "segment" in this document
may be equivalent to either "segment" or "subsegment" in [DASH], depending on the
addressing mode used.

This document’s concept of the MPD timeline is not directly expressed in [DASH]. To
improve understandability of the timing model, this document splits the DASH concept
of "presentation timeline" ([DASH] 7.2.1) into two separate concepts: the aggregated
component (MPD timeline) and the representation specific component (sample
timeline). These concepts are distinct but mutually connected via metadata in the MPD.

[DASH] uses "representation" to refer to a set of files and associated metadata, with the
same "representation" possibly used in different parts of a DASH presentation and/or in
different presentations. This document uses representation to refer to an individual
instance of a [DASH] "representation" - a set of data in an MPD that references some
files containing media samples. Using the same files in two places effecticely means
using two representations, whereas in [DASH] terminology it would be valid to call that a
single representation used with individual conditions/caveats that apply to each usage.
The deviation in terminology is intentional as it simplifies understanding and avoids
having to juggle the two concepts (as the "shared" view is typically not relevant).

The purpose of this document is to give a holistic overview of DASH presentation timing
and segment addressing, explaining the existing building blocks and rules defined by
[DASH] and adding further constraints to achieve greater interoperability between DASH
services and clients.

[DASH] 4.3 and 7.2.1 define the high-level structure and timing concepts of DASH, with
[DASH-CMAF] further relating them to [CMAF] concepts. The DASH-IF implementation

4.3. Terminology choices in this document§

5. Goal of the interoperable timing model§

guidelines allow considerably less flexibility in timing than provided by [DASH],
constraining services to a specific set of reasonably flexible behaviors that are highly
interoperable with modern client platforms.

This document defines an interoperable timing model and documents segment
addressing logic suitable for interoperable use cases. Alternative interpretations of
DASH timing may be equally valid from a standards conformance viewpoint.

The MPD defines the MPD timeline of a DASH presentation, which serves as the baseline
for all scheduling decisions made during playback and establishes the relative timing of
periods and media segments. The MPD timeline informs DASH clients on when it can
download and present which media segments. The contents of an MPD are a promise
by a DASH service to make specific media segments available during specific time spans
described by the MPD timeline.

Values on the MPD timeline are all ultimately relative to the zero point of the MPD
timeline, though possibly through several layers of indirection (e.g. period A is relative to
period B, which is relative to the zero point).

The ultimate purpose of the MPD is to enable the client to obtain media samples for
playback. The MPD also provides the information required for a DASH client to
dynamically switch between different bitrates of the same content (in different
representations) to adapt to changing network conditions.

The following MPD elements are most relevant to locating and scheduling the media
samples:

6. MPD timeline§

1. The MPD describes consecutive periods which map data onto the MPD timeline.

2. Each period describes of one or more representations, each of which provides
media samples inside a sequence of media segments located via segment
references. Representations contain independent sample timelines that are
mapped to the time span on the MPD timeline that belongs to the period.

3. Representations within a period are grouped into adaptation sets, which associate
related representations and decorate them with metadata.

Figure 4 The primary contents of a presentation, described by an MPD.

There exist two types of DASH presentations, indicated by MPD@type [DASH]:

In a dynamic presentation, the zero point of the MPD timeline is the mapped to the
point in wall clock time indicated by the effective availability start time, which is formed
by taking MPD@availabilityStartTime and applying any LeapSecondInformation offset

7. Presentation timing characteristics§

In a a static presentation (MPD@type="static") any media segment may be presented
at any time. The DASH client is in complete control over what content is presented
when and the entire presentation is available at any time.

In a dynamic presentation (MPD@type="dynamic") the MPD timeline is mapped to
wall clock time, with each media segment on the MPD timeline intended to be
presented at a specific moment in time (with some client-chosen time shift allowed).

Furthermore, media segments may become available and cease to be available
with the passage of time.

The MPD may change over time, enabling the structure of the presentation to
change over time (e.g. when a new title in the presentation is offered with a
different set of languages).

([DASH] 5.3.9.5 and 5.13). This allows a wall clock time to be associated with each media
segment, indicating the moment the media segment is intended to be presented. The
zero point of the MPD timeline will move when leap seconds occur ([DASH] 5.13). See
also § 13.2 Leap seconds.

MPD@mediaPresentationDuration MAY be present in an MPD. If present, it SHALL
accurately match the duration between the zero point on the MPD timeline and the end
of the last period, including the duration of any XLink periods. Clients SHALL calculate
the total duration of a static presentation by adding up the durations of each period and
SHALL NOT rely on the presence of MPD@mediaPresentationDuration .

An MPD defines an ordered list of one or more consecutive non-overlapping periods
([DASH] 5.3.2). A period is both a time span on the MPD timeline and a definition of the
data to be presented during this time span. Period timing is relative to the zero point of
the MPD timeline, though often indirectly (being relative to the previous period).

Figure 5 An MPD defines a collection of consecutive non-overlapping periods.

The start of a period is specified either explicitly as an offset from the MPD timeline zero
point (Period@start) or implicitly by the end of the previous period ([DASH] 5.3.2). The
duration of a period is specified either explicitly with Period@duration or implicitly by the
start point of the next period ([DASH] 5.3.2). See also § 8.1 First and last period timing in
static presentations and § 8.2 First and last period timing in dynamic presentations.

Periods are self-contained - a service SHALL NOT require a client to know the contents of
another period in order to correctly present a period. Knowledge of the contents of
different periods MAY be used by a client to achieve seamless period transitions,
especially when working with period-connected representations.

NOTE: This calculation is necessary because the durations of XLink periods can
only be known after the XLink is resolved. Therefore it is impossible to always
determine the total MPD duration on the service side as only the client is guaranteed
to have access to all the required knowledge (the contents of the XLink periods).

8. Period timing§

Common reasons for defining multiple periods are:

A period SHALL NOT have a duration of zero. MPD generators are expected to remove
any periods that are, for any reason, assigned a duration of zero. This might happen, for
example, due to ad insertion logic deciding not to insert any ad or due to a packager not
receiving any content to insert into the period. Clients SHALL ignore periods with a
duration of zero.

In a static presentation, the first period SHALL start at the zero point of the MPD
timeline (with a Period@start value of 0 seconds).

In a static presentation, the last period SHALL have a Period@duration .

Assembling a presentation from multiple self-contained pieces of content.

Inserting ads in the middle of existing content and/or replacing spans of existing
content with ads.

Adding/removing certain representations as the nature of the content changes (e.g.
a new title starts with a different set of offered languages).

Updating period-scoped metadata (e.g. codec configuration or DRM signaling).

EXAMPLE 2
The below MPD consists of two 20-second periods. The duration of the first period is
calculated using the start point of the second period. The total duration of the
presentation is 40 seconds.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" type="static">
 <Period>
 ...
 </Period>
 <Period start="PT20S" duration="PT20S">
 ...
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted -
this is not a fully functional MPD file.

¶

8.1. First and last period timing in static presentations§

In a dynamic presentation, the first period SHALL start at or after the zero point of the
MPD timeline (with a Period@start value of 0 seconds or greater).

In a dynamic presentation, the last period MAY have a Period@duration , in which case it
has a fixed duration. If without Period@duration , the last period in a dynamic
presentation has an unlimited duration (that may later be shortened by an MPD
update).

Representations provide the content for periods. A representation is a sequence of
media segments, an initialization segment, an optional index segment and related
metadata ([DASH] 5.3.1 and 5.3.5).

The MPD describes each representation using a Representation element. For each
representation, the MPD defines a set of segment references to the media segments

8.2. First and last period timing in dynamic presentations§

NOTE: A period with an unlimited duration can be converted to fixed duration by
an MPD update, so even a nominally unlimited duration is effectively constrained by
the MPD validity duration of the current MPD snapshot.

EXAMPLE 3
The below MPD consists of a 20-second period followed by a period of unlimited
duration.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" type="dynamic">
 <Period duration="PT20S">
 ...
 </Period>
 <Period>
 ...
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted -
this is not a fully functional MPD file.

¶

9. Representation timing§

and metadata describing the media samples provided by the representation. The
segment references and much of the metadata are shared by all representations in the
same adaptation set.

Each representation belongs to exactly one adaptation set and exactly one period,
although a representation may be connected with a representation in another period.

The samples within a representation exist on a linear sample timeline defined by the
encoder that creates the samples. Sample timelines are mapped onto the MPD timeline
by metadata stored in or referenced by the MPD ([DASH] 7.3.2).

EXAMPLE 4
The below MPD consists of a single 20-second period with three video, one audio and
one text representation. Each representations supplies the period with 20 seconds of
media samples.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" type="static">
 <Period duration="PT20S">
 <AdaptationSet>
 <Representation id="1" mimeType="video/mp4" codecs="avc1.64001f" bandwidth="38643
 <Representation id="2" mimeType="video/mp4" codecs="avc1.640028" bandwidth="11170
 <Representation id="3" mimeType="video/mp4" codecs="avc1.640033" bandwidth="27230
 </AdaptationSet>
 <AdaptationSet lang="en">
 <Representation id="4" mimeType="audio/mp4" codecs="mp4a.40.29" bandwidth="13135
 </AdaptationSet>
 <AdaptationSet lang="en-US">
 <Representation id="5" mimeType="application/mp4" codecs="wvtt" bandwidth="428" />
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted -
this is not a fully functional MPD file.

¶

9.1. Sample timeline§

Figure 6 A sample timeline is mapped onto the MPD timeline based on parameters defined in the MPD,
relating the media samples provided by a representation to the portion of the MPD timeline covered by
the period that references the representation. The sample timelines extend further beyond the range of

the period (full extents not illustrated).

The sample timeline does not determine what samples are presented. It merely
connects the timing of the representation to the MPD timeline and allows the correct
media segments to be identified when a DASH client makes scheduling decisions driven
by the MPD timeline. The exact connection between media segments and the sample
timeline is defined by the addressing mode.

The same sample timeline is shared by all representations in the same adaptation set
[DASH-CMAF]. Representations in different adaptation sets MAY use different sample
timelines.

A sample timeline is linear - encoders are expected to use an appropriate timescale and
sufficiently large timestamp fields to avoid any wrap-around. If wrap-around does occur,
a new period must be started in order to establish a new sample timeline.

The sample timeline is formed after applying any [ISOBMFF] edit lists ([DASH] 7.3.2).

A sample timeline is measured in timescale units defined as a number of units per
second ([DASH] 5.3.9.2 and 5.3.9.6). This value (the timescale) SHALL be present in the
MPD as SegmentTemplate@timescale or SegmentBase@timescale (depending on the
addressing mode).

Figure 7 @presentationTimeOffset is the key component in establishing the relationship between the MPD
timeline and a sample timeline.

The zero point of a sample timeline may be at the start of the period or at any earlier
point. The point on the sample timeline indicated by @presentationTimeOffset is
equivalent to the period start point on the MPD timeline ([DASH] 5.3.9.2). The value is
provided by SegmentTemplate@presentationTimeOffset or
SegmentBase@presentationTimeOffset , depending on the addressing mode, and has a
default value of 0 timescale units.

Each segment reference addresses a media segment that corresponds to a specific time
span on the sample timeline.

The exact mechanism used to define segment references depends on the addressing
mode used by the representation. All representations in the same adaptation set SHALL
use the same addressing mode.

NOTE: While optional in [DASH], the presence of the @timescale attribute is
required by the interoperable timing model because the default value of 1 is unlikely
to match any real-world content and is far more likely to indicate an unintentional
content authoring error.

NOTE: To transform a sample timeline position SampleTime to an MPD timeline
position, use the formula MpdTime = Period@start + (SampleTime -

@presentationTimeOffset) / @timescale .

9.2. Referencing media segments§

The sequence of segment references provided for a representation SHALL NOT
leave gaps between media segments or define overlapping media segments.

The portion of the period that a representation must provide media segments for
depends on the type of the presentation, with the requirements for each type described
below.

In a static presentation, a representation SHALL provide enough media segments to
cover the entire time span of the period.

Figure 8 In a static presentation, the entire period must be covered with media segments.

In a dynamic presentation, a representation SHALL provide enough media segments to
cover the time span of the period that intersects with the time shift buffer at any point
during the MPD validity duration.

9.2.1. Necessary segment references in static presentations§

9.2.2. Necessary segment references in dynamic presentations§

Figure 9 In a dynamic presentation, the time shift buffer and MPD validity duration determine the set of
required segment references for each representation. Media segments filled with gray need not be

referenced due to falling outside the time shift buffer in its maximum extents during the MPD validity
duration, despite falling within the bounds of a period.

It is a valid and common situation that a media segment is required to be referenced
but is not yet available. See also § 13.3 Availability.

An unnecessary segment reference is one that is not defined as required by § 9.2.1
Necessary segment references in static presentations or § 9.2.2 Necessary segment
references in dynamic presentations.

In a static presentation, the MPD SHALL NOT contain unnecessary segment references,
except for representations that use indexed addressing in which case such segment
references MAY be present.

NOTE: In the above example, the second period is shown as extending beyond the
end of the MPD validity duration (e.g. because it is of unlimited length), which
effectively increases the time shift buffer to the end of the MPD validity duration. If
the second period were shorter, the range of required segment references would
terminate with the end of the period.

9.2.3. Removal of unnecessary segment references§

In a dynamic presentation, the MPD SHALL NOT contain unnecessary segment
references except when any of the following applies, in which case an unnecessary
segment reference MAY be present:

Segment start points and segment end points do not need to be aligned with period
start/end points ([DASH] 7.2.1). The general expectation is that only the content that falls
within the period time span is presented by DASH clients. Allowing for overflow outside
this time span ensures that periods can be easily started and ended at arbitrary
positions on the MPD timeline without leaving gaps. Starting and ending periods is an
editorial decision that is typically independent of the technical structure of the contents
of the period.

Figure 10 Media segments and samples need not align with period boundaries. Some samples may be
entirely outside a period (marked gray) and some may overlap the period boundary (yellow).

Clients SHALL NOT present any samples from media segments that are entirely outside
the period, even if such media segments are referenced.

If a media segment overlaps a period boundary, clients SHOULD NOT present the
samples that lie outside the period and SHOULD present the samples that lie either

1. The segment reference is for future content and will eventually become necessary.

2. The segment reference is defined via indexed addressing.

3. The segment reference is defined by an <S> element that uses S@r to define
multiple segment references, some of which are necessary.

4. Removal of the segment reference is not allowed by content removal constraints.

9.3. Alignment of periods and representations§

partially or entirely within the period.

As perfect alignment between sample and period boundaries cannot be expected,
clients MAY incur small time shift in either direction (within extents permitted by this
document) when playing a dynamic presentation and transitioning in/out of a period
where the sample and period boundaries are not aligned.

Some encoders experience clock drift - they do not produce exactly 1 second worth of
output per 1 second of input, either stretching or compressing the sample timeline with
respect to the MPD timeline.

Figure 11 Comparison of an encoder correctly tracking wall clock time (blue) and an encoder with a
clock that runs 0.8% too slowly (yellow), leading it to producing fewer seconds of content than expected

(the correct amount of content has been temporally compressed by the encoder to fit into a smaller
number of seconds). A DASH packager cannot use the yellow encoder’s output as-is or it would violate

the DASH timing model, which requires services to track wall clock time, and potentially lead to track de-
synchronization.

Clock drift not only causes timing model violations when an insufficient amount of data
is produced but also leads to de-synchronization of content in tracks encoded based on

NOTE: In the end, which samples are presented is entirely up to the client. It may
sometimes be impractical to present media segments only partially, depending on
the capabilities of the client platform, the type of media samples involved and any
dependencies between samples.

10. Clock drift is forbidden§

different clocks. [CMAF] 6.3 and 6.6.8 require tracks to be synchronized.

To detect clock drift, one can check for the presence/absence of data near the current
wall clock time. If data from now or the immediate past is absent, possibly the encoder
has a slow clock. If data from the future is present, possibly the encoder has a fast clock.
Furthermore, gradual de-synchronization of content in different tracks over a long play
duration is a clear sign of clock drift on one or more of the involved encoders.

It would be unreasonable to expect DASH clients to counteract clock drift by performing
their own timeline stretching or compressing during playback, even if provided with the
information about clock differences. DASH clients are based on very limited media
platform APIs that typically lack the capability for any such compensation. Therefore, a
DASH service SHALL NOT publish content that suffers from clock drift.

The solution is to adjust the encoder so that it correctly tracks wall clock time, e.g. by
performing regular small adjustments to the encoder clock to counteract any "natural"
drift it may be experiencing. The exact implementation depends on the encoder timing
logic and is out of scope of this document.

If the encoder cannot be adjusted to not suffer from clock drift, the only remaining
option is to post-process its output to bring the presentation into conformance with the
timing model. The facilities available to the packager are likely less powerful than those
available to the encoder - it is unlikely that re-encoding/re-timing the media samples is
practical in the packager. Furthermore, this type of adjustment will not eliminate track
de-synchronization that will be present unless the clocks used to encode all tracks drift
at the same rate.

DASH packagers are responsible for generating DASH presentations that conform to
targeted standards or specifications and cannot assume perfect encoder
implementations. It is a fact that some encoders suffer from clock drift. DASH packagers
SHOULD implement workarounds to ensure the presentation is conforming to targeted
standards and specifications. This may require some some unavoidable disruption of
the end-user experience.

NOTE: A lack of data at the current wall clock time or in the past is typically a
violation of the timing model, whereas there is no explicit restriction on providing
data in the future.

10.1. Workarounds for clock drift§

The following are examples of approaches a DASH packager could use to bring content
from an encoder suffering clock drift into conformance:

Such after-the-fact corrective actions can be disruptive and only serve as a backstop to
prevent complete playback failure cased by timing model violations. Such workarounds
might be satisfactory when correcting for very small drift rates, with any disruptions
being relatively rare.

A media segment is an HTTP-addressable data structure that contains media samples,
referenced by an MPD via a segment reference. The structure of a media segment is
that of a CMAF segment consisting of one or more CMAF fragments [DASH-CMAF].
Different media segments may be different byte ranges accessed on the same URL.

The segment-related terminology in this document is aligned with [CMAF]
rather than [DASH]. See § 4.3 Terminology choices in this document to better

understand the differences.

Media segments contain one or more consecutive media samples and consecutive
media segments in the same representation contain consecutive media samples
[CMAF].

A media segment contains the media samples that exactly match the time span on the
sample timeline associated with a media segment via a segment reference ([DASH] 7.2.1
and [DASH-CMAF]), except when using simple addressing in which case a certain
amount of inaccuracy may be present as defined in § 18.4.1 Inaccuracy in media
segment timing when using simple addressing. How segment references are defined
depends on the addressing mode.

1. Drop a span of content if input is produced faster than real-time.

2. Insert regular padding content if input is produced slower than real-time. This
padding can take different forms:

Silence or a blank picture.

Repeating frames.

Insertion of short-duration periods where the affected representations are not
present.

11. Media segments§

All timing-related clauses in this document refer to the nominal timing
described in the MPD unless otherwise noted. DASH clients are expected to

operate with nominal times in playback logic, even if the real values differ due
to permitted amounts of inaccuracy.

The segment start point is the point on the MPD timeline where the media segment
starts according to the segment reference obtained from the MPD. The segment end
point is the segment start point plus the media segment duration defined by the
segment reference.

Media segments in different representations of the same adaptation set are aligned
([CMAF] 7.3.4 and [DASH-CMAF]). This means they contain media samples for the same
time span on the sample timeline. This is true even if using simple addressing with
inaccurate media segment timing. That is, not only is the nominal timing aligned but so
is the true media sample timing inside the media segments.

In certain circumstances content may be offered such that the contents of one
adaptation set are technically compatible with the contents an adaptation set in a
previous period ([DASH] 5.3.2.4). Such adaptation sets are period-connected.

The main characteristic of connectivity is that initialization segments of representations
with matching @id in period-connected adaptation sets are functionally equivalent
([DASH] 5.3.2.4). That is, the initialization segment of a representation in one period-
connected adaptation set can be used to initialize playback of a representation with
matching @id in the other period-connected adaptation set. Connectivity is typically
achieved by using the same encoder to encode the content of multiple periods using the
same settings.

NOTE: In [DASH] terminology, the segment start point is often equivalent to
"earliest presentation time" of the media segment. However, this relation does not
always hold true as "earliest presentation time" is defined in terms of media sample
timing which is affected by the inaccuracy allowed under simple addressing. In
contrast, the segment start point is always the nominal start point and is not affected
by any potential timing inaccuracy.

12. Period connectivity§

In encrypted content the content key identifier default_KID is part of the
initialization segment. Using a different content key breaks period

connectivity that would otherwise exist due to matching codec configuration.

Adaptation sets SHALL NOT be signaled as period-connected if the set of
representations in them is different, even if all shared representations remain
compatible.

An MPD MAY contain unrelated periods between periods that contain period-connected
adaptation sets.Period connectivity MAY be chained across any number of periods.

Period-connected adaptation sets content SHOULD be signaled in the MPD as period-
connected. This signaling helps clients ensure seamless playback across period
transitions.

Figure 12 Adaptation sets can be signaled as period-connected, enabling client optimizations. Arrows
on diagram indicate direction of connectivity reference (from future to past), with the implied message

being "the client can use the same decoder configuration it used where the arrow points to".

The sample timelines of representations in period-connected adaptation sets MAY be
discontinuous between two periods (e.g. due to encoder clock wrap-around or skipping
some content as a result of editorial decisions). See also § 12.2 Period continuity.

NOTE: The above constraint removes some ambiguity from the [DASH] definition,
which does not explicitly state whether it is allowed to only have a subset of
representations that is connected. GitHub #387

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/387

The following signaling in the MPD indicates that two adaptation sets are period-
connected across two periods ([DASH] 5.3.2.4):

The period-connected adaptation sets have the same @id and the same set of
Representation@id values ([DASH] 5.3.2.4).

As a period may start and/or end in the middle of a media segment, the same media
segment may simultaneously be referenced by two period-connected adaptation sets,
with one part of it scheduled for playback during the first period and the other part
during the second period. This is likely to be the case when no sample timeline
discontinuity is introduced by the transition.

Figure 13 The same media segment will often exist in two periods at a period-connected transition. On
the diagram, this is segment 4.

Clients SHOULD NOT present a media segment twice when it occurs on both sides of a
period transition in a period-connected adaptation set.

Clients SHOULD ensure seamless playback of period-connected adaptation sets in
consecutive periods. Clients unable to ensure seamless playback MAY incur some
amount of time shift at the period transition point provided that the resulting time shift
is permitted by the timing model.

The adaptation set in the second period has a supplemental property descriptor
with:

@schemeIdUri set to urn:mpeg:dash:period-connectivity:2015 .

@value set to the Period@id of the first period.

12.1. Segment reference duplication during connected period transitions§

In addition to period connectivity, [DASH] 5.3.2.4 defines period continuity. Continuity is
a special case of period connectivity that indicates no timeline discontinuity is present at
the transition point between the media samples of the two continuous periods. Under
continuity conditions, the client is expected to be able to continue seamless playback by
merely appending media segments from the new period, without any reconfiguration at
the period boundary.

Continuity SHALL NOT be signaled if the first/last sample in the media segment on the
period boundary does not exactly start/end on the period boundary. This cannot be
expected to be generally true, as period boundaries are often an editorial decision
independent of the media segment and sample layout.

Period continuity MAY be signaled in the MPD when the above condition is met, in which
case period connectivity SHALL NOT be simultaneously signaled on the same
representation. Continuity implies connectivity ([DASH] 5.3.2.4).

The signaling of period continuity is the same as for period connectivity, except that the
value to use for @schemeIdUri is urn:mpeg:dash:period-continuity:2015 ([DASH] 5.3.2.4).

Clients MAY take advantage of any platform-specific optimizations for seamless playback
that knowledge of period continuity enables; beyond that, clients SHALL treat continuity
the same as connectivity.

NOTE: The exact mechanism that ensures seamless playback depends on client
capabilities and will be implementation-specific. Any shared media segment
overlapping the period boundary may need to be detected and deduplicated to avoid
presenting it twice.

12.2. Period continuity§

NOTE: This further constrains usage of continuity compared to [DASH], which does
not require the boundary samples to actually be the first/last sample in the media
segment. However, that interpretation leaves room for incompatible
implementations depending on how the client handles deduplication of duplicate
segments at period boundaries (which would be required under the rules of the
interoperable timing model in order to not leave a gap).

The requirements in this section and its subsections only apply to dynamic
presentations.

The following factors primarily differentiate dynamic presentations from static
presentations:

13. Dynamic presentations§

1. The media segments of a dynamic presentation may become available over time
and cease to be available after the passage of time. That is, not all segments are
necessarily available at all times.

2. Playback of a dynamic presentation is synchronized to a wall clock (with some
amount of client-chosen time shift allowed).

3. The MPD of a dynamic presentation may change over time, with each snapshot
having a limited MPD validity duration and clients regularly downloading new
snapshots of the MPD.

During playback of dynamic presentations, a wall wall clock is used as the timing
reference for DASH client decisions. This is a synchronized clock shared by the DASH
client and service. With the exception of clock adjustments performed by the DASH
client for synchronization purposes, the time indicated by the wall clock increases at real

EXAMPLE 5
The below MPD consists of two 300-second periods. The duration of the first period
is calculated using the start point of the second period. The total duration of the
presentation is 600 seconds.

The dynamic presentation was intended to be presented starting at 09:35 UTC on
December 2, 2017, allowing for up to 400 seconds of time shift by the DASH client. By
the absence of MPD@minimumUpdatePeriod , the MPD indicates that its contents will
never change.

The absence of an LeapSecondInformation element indicates the service provider does
not expect the service to remain accessible for long enough to encounter a leap
second.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" type="dynamic"
 availabilityStartTime="2017-12-02T09:35:00Z" timeShiftBufferDepth="PT400S">
 <Period>
 ...
 </Period>
 <Period start="PT300S" duration="PT300S">
 ...
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted -
this is not a fully functional MPD file.

The requirements in this document mandate the removal of expired content and
expired MPDs. Given the 2017 date marked in the MPD, this example is obviously
expired in its entirety. The necessary removal of expired content from within the
MPD has been omitted for purposes of illustration.

¶

13.1. Clock synchronization§

time speed (1 second per second), regardless of the duration of content that has been
presented by the DASH client.

It is critical to synchronize the clocks of the DASH client and service when using a
dynamic presentation because the MPD timeline of a dynamic presentation is mapped
to wall clock time and many playback decisions are clock driven and assume a common
understanding of time by the DASH client and service.

The time indicated by the wall clock does not necessarily need to match some universal
standard as long as the DASH client and service are mutually synchronized.

Clock synchronization mechanisms are described by UTCTiming elements in the MPD
([DASH] 5.8.4.11).

The MPD of a dynamic presentation SHALL include at least one UTCTiming element that
defines a clock synchronization mechanism. If multiple UTCTiming elements are listed,
their order determines the order of preference [DASH].

A client presenting a dynamic presentation SHALL synchronize its local clock according
to the UTCTiming elements in the MPD and SHALL emit a warning or error to application
developers when clock synchronization fails, no UTCTiming elements are defined or none
of the referenced clock synchronization mechanisms are supported by the client.

A DASH client SHALL NOT use a synchronization method that is not listed in the MPD
unless explicitly instructed to do so by the application developer.

The use of a "default time source" by DASH clients is not allowed because this
often obscures interoperability problems and introduces inconsistent

behavior due to device clock differences.

The set of time synchronization mechanisms SHALL be restricted to the following subset
of schemes from among those defined in [DASH] 5.8.5.7:

urn:mpeg:dash:utc:http-xsdate:2014

urn:mpeg:dash:utc:http-iso:2014

urn:mpeg:dash:utc:http-head:2014

urn:mpeg:dash:utc:direct:2014

ISSUE 1 We could benefit from some detailed examples here, especially as clock
sync is such a critical element of live services.

¶

Dynamic presentations that cross the boundary between December/January or June/July
([LEAP-SECONDS]) need to correctly represent the effects of leap seconds to DASH
clients, which shift the MPD timeline start point. Under the model defined by [DASH]
5.13, clients are informed of necessary leap second adjustments via the MPD.

The MPD of a dynamic presentations SHALL publish leap second offset information in
the MPD, in the form of a LeapSecondInformation element as defined by [DASH] 5.13,
unless the service provider does not intend for the presentation to remain accessible
long enough to encounter a December/January or June/July transition in the UTC
timezone.

Clients SHALL process leap second offset information (and any updates received due to
MPD refreshes) in order to accurately calculate the effective availability start time.

A media segment is available when an HTTP request to acquire the media segment can
be started and successfully performed to completion by a client ([DASH] 3.1.6). During
playback of a dynamic presentation, new media segments continuously become
available and stop being available with the passage of time.

An availability window is a time span on the MPD timeline that determines which media
segments clients can expect to be available.

Each adaptation set has its own availability window. Services SHALL NOT define MPD
attributes that affect the availability window on the representation level.

Figure 14 The availability window determines which media segments can be expected to be available,
based on where their segment end point lies.

13.2. Leap seconds§

13.3. Availability§

The availability window is calculated as follows:

Media segments that have their segment end point inside or at the end of the
availability window are available [DASH].

It is the responsibility of the DASH service to ensure that media segments are
available to clients when they are described as available by the MPD [DASH].
Keep in mind that the criterium for availability is a successful download by

clients, not successful publishing from a packager.

Clients MAY at any point attempt to acquire any media segments that the MPD signals
as available. Clients SHALL NOT attempt to acquire media segments that the MPD does
not signal as available.

Despite best efforts, DASH services occasionally fail to achieve the availability windows
advertised in the MPD. To ensure robust behavior even in the face of imperfect services,
clients SHOULD NOT assume that media segments described by the MPD as available

NOTE: A DASH service will typically make media segments available some seconds
ahead of t=now , depending on its configuration and latency target. Furthermore,
some periods may be entirely prepared in advance and available at all times (e.g. ads
inserted between truly live content).

1. Let now be the current wall clock time according to the wall clock.

2. Let AvailabilityWindowStart be now - MPD@timeShiftBufferDepth .

If MPD@timeShiftBufferDepth is not defined, let AvailabilityWindowStart be the
effective availability start time.

3. Let TotalAvailabilityTimeOffset be the sum of all @availabilityTimeOffset values that
apply to the adaptation set, either via SegmentBase , SegmentTemplate or BaseURL
elements ([DASH] 5.3.9.5.3).

4. The availability window is the time span from AvailabilityWindowStart to now +

TotalAvailabilityTimeOffset .

NOTE: [DASH] 4.3 and 5.3.9 define "segment availability time" of a segment as the
span of wall clock time during which that media segment is available. Consequently,
the availability window at each moment is approximately equivalent to the union of
"segment availability times" of all available media segments at that moment.

are available and SHOULD implement appropriate retry/fallback behavior to account for
timing errors by slow-publishing or eagerly-unpublishing services.

The time shift buffer is a time span on the MPD timeline that defines the set of media
segments that a client is allowed to present at the current moment in time according to
the wall clock (now).

This is the mechanism by which clients can introduce a time shift (an offset) between
wall clock time and the MPD timeline when presenting dynamic presentations. The time
shift is zero when a client is presenting the media segment at the end point of the time
shift buffer. By playing back media segments from further in the past, a positive time
shift is introduced.

The following additional factors further constrain the set of media segments that can be
presented at the current time. These factors often force a client to introduce a time
shift:

The time shift buffer extends from now - MPD@timeShiftBufferDepth to now . In the
absence of MPD@timeShiftBufferDepth the start of the time shift buffer is the effective
availability start time.

13.4. Time shift buffer§

NOTE: A time shift of 30 seconds means that the client starts presenting a media
segment at the moment when its position on the MPD timeline reaches a distance of
30 seconds from the end of the time shift buffer.

1. § 13.3 Availability - not every media segment in the time shift buffer is guaranteed to
be available.

2. § 13.5 Presentation delay - the service may define a delay that forbids the use of a
section of the time shift buffer.

Figure 15 Media segments overlapping the time shift buffer may potentially be presented by a client if
other constraints do not forbid it.

Clients MAY present samples from media segments that overlap (either in full or in part)
the time shift buffer, assuming no other constraints forbid it. Clients SHALL NOT present
samples from media segments that are entirely outside the time shift buffer (whether in
the past or the future).

The start of the time shift buffer MAY be before the start of the first period. Common
reasons for this are:

A dynamic presentation SHALL contain a period that ends at or overlaps the end point
of the time shift buffer, except when reaching the end of live content in which case the
last period MAY end before the end of the time shift buffer.

Clients SHALL NOT allow seeking into regions of the time shift buffer that are not
covered by periods, regardless of whether such regions are before or after the periods
described by the MPD.

There is a natural conflict between the availability window and the time shift buffer. It is
legal for a client to present media segments as soon as they overlap the time shift
buffer, yet such media segments might not yet be available.

Furthermore, the delay between media segments entering the time shift buffer and
becoming available might be different for different representations that use different

The presentation just started and there is not enough content to fill the time shift
buffer.

The service is published with an effectively infinite time shift buffer (up to the zero
point of the MPD timeline as indicated by the effective availability start time).

13.5. Presentation delay§

media segment durations. This difference may also change over time if a representation
does not use a constant media segment duration.

The mechanism that allows DASH clients to resolve this conflict is the presentation
delay, which decreases the time shift buffer by moving its end point into the past,
creating an effective time shift buffer with a reduced duration.

Clients SHALL calculate a suitable presentation delay to ensure that the media segments
it schedules for playback are available and that there is sufficient time to download
them once they become available.

The information required to calculate an optimal presentation delay might not always be
available to DASH clients (e.g. because the client is not yet aware of upcoming periods
that will be added to the MPD later and will significantly change the optimal
presentation delay). Services MAY define the MPD@suggestedPresentationDelay attribute
to provide a suggested presentation delay. Clients SHOULD use
MPD@suggestedPresentationDelay when provided by the MPD, ignoring any calculated
value.

A common error in DASH content authoring is to attempt to use
MPD@minBufferTime to control the presentation delay. MPD@minBufferTime is
not related to presentation delay and merely describes the allowed jitter in
content encoding ([DASH] 5.3.5.2), as determined by the encoder or derived

from the encoder configuration.

The effective time shift buffer is the time span from the start of the time shift buffer to
now - PresentationDelay . Services SHALL NOT define a value for
MPD@suggestedPresentationDelay that results in an effective time shift buffer of negative
or zero duration.

ISSUE 2 Can we recommend some meaningful algorithm for this? Something to use
as a starting point would be nice to provide.

¶

NOTE: As different clients might use different algorithms for calculating the
presentation delay, providing MPD@suggestedPresentationDelay enables services to
roughly synchronize the playback start position of clients.

Figure 16 Media segments that overlap the effective time shift buffer are the ones that may be
presented at time now . Two representations with different segment lengths are shown. Diagram

assumes @availabiltiyTimeOffset=0 .

Clients SHALL constrain seeking to the effective time shift buffer. Clients SHALL NOT
attempt to present media segments that fall entirely outside the effective time shift
buffer.

The MPD of a dynamic presentation may change over time. The nature of the change is
not restricted unless such a restriction is explicitly defined.

Some common reasons to make changes in the MPDs of dynamic presentations:

13.6. MPD updates§

Adding new segment references to an existing period.

Adding new periods.

Converting unlimited-duration periods to fixed-duration periods by adding
Period@duration .

Removing segment references and/or periods that have fallen out of the time shift
buffer.

Shortening an existing period when editorial changes in content scheduling take
place.

Removing MPD@minimumUpdatePeriod to signal that MPD will no longer be updated.

Converting the presentation to a static presentation to signal that a live service has
become available on-demand as a recording.

[DASH] 5.4.1 defines various constraints for MPD updates, most importantly:

DASH-IF implementation guidelines further extend these constraints:

Additional restrictions on MPD updates are defined by other parts of this document.

Clients SHALL use @id to track period, adaptation set and representation identity across
MPD updates (instead of relying on, for example, the order of XML elements).

It will take some time for each MPD update to reach clients, both due to the MPD validity
duration and network connectivity influences. The constraints in this document set

MPD@id does not change.

MPD.Location does not change.

Period@id does not change.

The functional behavior of a representation (identified by a matching
Representation@id value) does not change, neither in terms of metadata-driven
behavior (including metadata inherited from adaptation set level) nor in terms of
media segment timing. In particular:

SegmentTemplate@presentationTimeOffset does not change.

SegmentBase@presentationTimeOffset does not change.

MPD@availabilityStartTime SHALL NOT change.

Leap second adjustments are performed by adjusting the
LeapSecondInformation element (see § 13.2 Leap seconds).

Period@start SHALL NOT change.

Period@duration SHALL NOT change except when explicitly allowed by other
statements in this document.

AdaptationSet@id SHALL be present on every AdaptationSet element.

The set of adaptation sets present in an existing period (i.e. the set of
AdaptationSet@id values) SHALL NOT change.

The relative order of AdaptationSet elements in a Period element SHALL NOT change.

The representations present in an existing adaptation set (i.e. the set of
Representation@id values) SHALL NOT change.

The relative order of Representation elements in an AdaptationSet element SHALL
NOT change.

some limits on the data allowed to change with an MPD update in order to prevent
changes in data already processed by DASH clients. Services SHOULD perform changes
well in advance of the changed data being processed by clients.

The MPD of a dynamic presentation remains valid not only at its moment of initial
publishing but through the entire MPD validity duration, which is a time span of
duration MPD@minimumUpdatePeriod starting from the moment the MPD download is
started by a client ([DASH] 5.4.1).

Validity means that the MPD remains in conformance to all requirements defined by
[DASH] and this document. For example, any MPD of a dynamic presentation must
include enough segment references to cover a time span of MPD@minimumUpdatePeriod
into the future, in addition to the segment references that would ordinarily be expected
at time of initial download. See also § 9.2.2 Necessary segment references in dynamic
presentations.

Clients SHALL process state changes that occur during the MPD validity duration. For
example new media segments will become available over time if they are referenced by
the MPD and old ones become unavailable, even without downloading a new snapshot
of the MPD.

The MPD validity duration starts when the MPD download is initiated by a
client, which may be some time after it is generated/published!

The presence or absence of MPD@minimumUpdatePeriod SHALL be used by DASH
services to signal whether and when the MPD might be updated (with presence
indicating potential for future updates):

13.6.1. MPD snapshot validity§

A nonzero value for MPD@minimumUpdatePeriod defines the MPD validity duration
of the present snapshot of the MPD, starting from the moment its download was
initiated. This allows the service to provide regular updates to the MPD while
limiting the refresh interval to avoid overload.

The value 0 for MPD@minimumUpdatePeriod indicates that the MPD has no validity
after the moment it is retrieved. In such a situation, the client SHALL acquire a new
MPD whenever it wants to make new media segments available (no "natural" state
changes will occur due to passage of time).

In addition to the MPD@minimumUpdatePeriod mechanism for defining the MPD validity
duration, a DASH service MAY publish in-band MPD validity update events ([DASH]
5.10.4.2). If a DASH client processes in-band events for determining the MPD snapshot
validity duration then MPD@minimumUpdatePeriod is ignored for the purposes of
determining MPD snapshot validity.

When in-band signaling is used, the absence of an in-band event that corresponds to a
particular MPD snapshot (identified by MPD@publishTime) implies MPD snapshot validity
extension until an explicit validity duration is defined by a future in-band event. This
enables finer control over MPD snapshot validity by the service but might not be
supported by all clients.

Services SHALL NOT require clients to support in-band events - it is an optional
optimization mechanism to allow clients to reduce HTTP traffic caused by fetching new
MPD snapshots.

[DASH] allows the following mechanisms for adding content:

Absence of the MPD@minimumUpdatePeriod attribute indicates an infinite validity
(the MPD will never be updated).

One typical use case is to combine this with an infinite sequence of segment
references, defining a presentation that never ends and never changes.

Another use case is using a dynamic presentation to schedule the presentation
of pre-prepared finite content for a specific time span of wall clock time.

13.6.1.1. In-band MPD validity events§

NOTE: Effectively, there are two MPD snapshot validity durations in place with in-
band signaling, one defined by MPD@minimumUpdatePeriod and one by in-band
signaling. A DASH client may use either. DASH services are sometimes published with
MPD@minimumUpdatePeriod=0 in such a situation, reducing the validity duration
defined by one model to zero and allowing the other model to have full control. This
may cause extra overhead for clients that do not use in-band signals, however.

13.6.2. Adding content to the MPD§

Additional segment references may be added to the last period.

Segment references SHALL NOT be added to any period other than the last period.

An MPD update MAY combine adding segment references to the last period with adding
of new periods. An MPD update that adds content MAY be combined with an MPD
update that removes content.

Figure 17 MPD updates can add both segment references and periods (additions highlighted in blue).

The duration of the last period cannot change as a result of adding segment references.
A live service will typically use a period with an unlimited duration to continuously add
new segment references.

When using simple addressing or explicit addressing, it is possible for a period to define
an infinite sequence of segment references that extends to the end of the period (e.g.
using SegmentTemplate@duration or S@r="-1"). Such self-extending reference sequences
are equivalent to explicitly defined segment reference sequences that extend to the end
of the period and clients MAY obtain new segment references from such sequences
even between MPD updates.

[DASH] allows the following mechanisms for removing content:

Additional periods may be added to the end of the MPD.

13.6.3. Removing content from the MPD§

Multiple content removal mechanisms MAY be combined in a single MPD update. An
MPD update that removes content MAY be combined with an MPD update that adds
content.

Removal of content is only allowed if the content to be removed is expired or
not yet available to clients and guaranteed not to become available within the
MPD validity duration of any MPD snapshot potentially downloaded by clients.

To determine the content that may be removed, calculate EarliestRemovalPoint as follows
for each adaptation set:

Media segments that overlap or end before EarliestRemovalPoint might be considered by
clients to be available at the time the MPD update is processed. Therefore, an MPD
update removing content SHALL NOT remove any segment references to media
segments with a segment start point before or at EarliestRemovalPoint .

The last period may change from unlimited duration to fixed duration.

The duration of the last period may be shortened.

One or more periods may be removed entirely from the end of the MPD timeline.

Expired periods and segment references that no longer overlap the time shift buffer
may be removed from the start of the MPD timeline.

1. Let PublishingDelay be the end-to-end delay for MPD update publishing. This is the
time between the MPD generator creating a new version of the MPD and this new
version becoming published to all clients on the CDN edge (but not necessarily
downloaded yet by any of them).

2. Let AvailabilityWindowEnd be the end point of the availability window.

3. Let EarliestRemovalPoint be AvailabilityWindowEnd + MPD@minimumUpdatePeriod +

PublishingDelay .

NOTE: As each adaptation set has its own availability window, so does each
adaptation set have its own EarliestRemovalPoint .

Figure 18 MPD updates can remove both segment references and periods (removals highlighted in red).

Perfect handling of EarliestRemovalPoint by every service cannot be assumed. Clients
SHALL NOT fail catastrophically if an MPD update removes already buffered data but
MAY incur unexpected time shift or a visible transition at the point of removal or at time
of MPD update processing. It is the responsibility of the service to avoid removing data
that may already be in use.

In addition to editorial removal from the end of the MPD, content naturally expires due
to the passage of time. Expired content also needs to be removed:

The above logic implements the removal of expired unnecessary segment references
according to the rules defined in § 9.2.3 Removal of unnecessary segment references.

Live services can reach a point where no more content will be produced - existing
content will be played back by clients and once they reach the end, playback will cease.

Explicitly defined segment references (S elements) SHALL be removed when they
have expired (i.e. the segment end point has fallen out of the time shift buffer).

A repeating explicit segment reference (S element with @r != 0) SHALL NOT be
removed until all repetitions have expired.

Periods with their end points before the time shift buffer SHALL be removed.

13.6.4. End of live content§

When an MPD is updated to a state that describes the final content of a live service, the
service SHALL define a fixed duration for the last period, remove the
MPD@minimumUpdatePeriod attribute and cease performing MPD updates to signal to
clients that no more content will be added to the MPD.

Upon detecting the removal of MPD@minimumUpdatePeriod clients SHOULD present a
user experience suitable for end of live content.

A common mistake is to treat the eventual cessation of new content as a
transient or fatal error (resulting in potentially infinite loading even before

the final media segment is presented to the user).

If the ending live service is to be converted to a static presentation for on-demand
viewing, the service MAY change MPD@type to static when MPD@minimumUpdatePeriod is
removed or do so at a later time. The resulting static presentation MAY remain
accessible on the same URL as the original dynamic presentation. For content changes
performed simultaneously with the MPD@type change, the same rules apply as for
regular MPD updates of dynamic presentations.

Clients SHALL NOT lose track of the playback position if a dynamic presentation
becomes a static presentation, even if the time span of the static presentation exceeds
the time shift buffer of the dynamic presentation (e.g. because the static presentation
includes content further into the future).

The MPD of a dynamic presentation in which all content has expired (and which is not
converted to a static presentation for on-demand viewing) SHOULD be unpublished,
resulting in a 404 Not Found status when clients attempt to access the MPD.

To stay informed of the MPD updates, clients need to perform MPD refreshes at
appropriate moments to download the updated MPD snapshots.

NOTE: The MPD update constraints mean that making a live service available for
on-demand viewing on the same URL, by transforming MPD@type to static , does not
allow for historical (expired) content to once again become available. To enable
expired content to be published on-demand, the MPD should be published on a new
URL as an independent static presentation.

13.7. MPD refreshes§

Clients presenting dynamic presentations SHALL execute the following MPD refresh
logic:

It can often be the case that a live service signals a short MPD validity duration to allow
for the possibility of terminating the last period with minimal end-to-end latency. At the
same time, generating future segment references might not require any additional
information to be obtained by clients. That is, a situation might occur where constant
MPD refreshes are required but the MPD content rarely changes.

Clients using HTTP to perform MPD refreshes SHOULD use conditional GET requests as
specified in [RFC7232] to avoid unnecessary data transfers when the contents of the
MPD do not change between refreshes.

1. When an MPD snapshot is downloaded, it is valid for the MPD validity duration as
measured from the moment the download is initiated. See § 13.6.1 MPD snapshot
validity.

2. A client can expect to be able to successfully download any media segments that
the MPD defines as available at any point during the MPD validity duration.

3. The clients MAY refresh the MPD at any point. Typically this will occur because the
client wants to obtain more segment references or make more media segments (for
which it might already have references) available by extending the MPD validity
duration.

This may result in a different MPD snapshot being downloaded, with updated
information.

Or it may be that the MPD has not changed, in which case its MPD validity
duration is extended to DownloadStart + MPD@minimumUpdatePeriod .

NOTE: There is no requirement that clients poll for updates at
MPD@minimumUpdatePeriod interval. They can do so as often or as rarely as they wish
- this attribute simply defines the MPD validity duration.

13.7.1. Conditional MPD downloads§

Due to network or other faults, it is possible that media segments do not reach the
DASH packager, effectively creating a discontinuity in a representation. As DASH clients
typically have difficulties processing content with gaps and the timing model described
here forbids gaps in general, missing segments would likely lead to an unsatisfactory
playback experience for end-users.

Figure 19 A DASH packager might not have every media segment available when it needs to publish
them. Corrective actions must be taken to ensure an uninterrupted timeline is presented to DASH

clients.

Therefore, DASH services SHALL NOT publish periods that have missing segments,
whether the segment loss is described by "missing content segments" ([DASH] 6.2.6) or
by any other means (including not describing it).

Figure 20 The simplest correction is to start a new period that does not include the affected
representation for the duration of the loss. Other representations remain present and a client can often

continue seamless playback without the missing representation.

Instead, DASH services SHOULD start a new period that does not include the
representation that would experience a gap, later restoring the representation with a

14. Segment loss handling§

new period transition. Period-connected adptation sets can enable DASH clients to
perform such transitions seamlessly in some scenarios.

Figure 21 Other solutions might involve replacing the missing media segment with a placeholder, either
from a different representation or an entirely artificial one.

Some DASH clients experience difficulties when transitioning to/from a very
short period (e.g. with a duration of only 1 media segment). Implementations
MAY extend the transition period for better compatibility with such clients.

Alternatively, given a sufficiently capable DASH packager and provided that technical
constraints of representations are satisfied, the missing media segment MAY be
replaced with an aligned media segment from a lower bitrate (likely requires a single
initialization CMAF switching set [CMAF] 7.3.4.2).

Some services store text adaptation sets in stand-alone IMSC1 or WebVTT files, without
segmentation or [ISOBMFF] encapsulation.

Timecodes in stand-alone text files SHALL be relative to the period start point.

@presentationTimeOffset SHALL NOT be present and SHALL be ignored by clients if
present.

15. Timing of stand-alone IMSC1 and WebVTT text files§

NOTE: Storing text tracks in stand-alone files is not permitted by [CMAF]. If you
intend your DASH service to conform to [CMAF], you must store text tracks as
segmented [CMAF] tracks.

Some aspects of [DASH] are not compatible with the interoperable timing model defined
in this document. In the interest of clarity, they are explicitly listed here:

This section is informative.

EXAMPLE 6
IMSC1 subtitles in stored in a stand-alone XML file.

<AdaptationSet mimeType="application/ttml+xml" lang="en-US">
 <Role schemeIdUri="urn:mpeg:dash:role:2011" value="subtitle" />
 <Representation>
 <BaseURL>subtitles_en_us.xml</BaseURL>
 </Representation>
</AdaptationSet>

Parts of the MPD structure that are not relevant for this chapter have been omitted -
this is not a fully functional AdaptationSet element.

¶

16. Forbidden techniques§

The @presentationDuration attribute SHALL NOT be used. This information serves no
purpose under the interoperable timing model.

The @availabilityTimeComplete attribute SHALL NOT be used. The concept of
"incomplete but available" media segments that this attribute enables is not part of
the interoperable timing model.

There SHALL NOT be "missing content segments" ([DASH] 6.2.6) in the content. If
content is lost during processing, the expectation is that the encoder/packager will
either replace it with valid content (e.g. content from a lower representation or
potentially even blank picture or silent audio) or start a new period that does not
contain the representation that incurs data loss.

17. Examples§

It may be that for various content processing workflow reasons, some tracks have a
different duration from others. For example, the audio track might start a fraction of a
second before the video track and end some time before the video track ends.

Figure 22 Content with different track lengths, before packaging as DASH.

You now have some choices to make in how you package these tracks into a DASH
presentation that conforms to this document. Specifically, there exists the requirement
that every representation must cover the entire period with media samples.

Figure 23 Content may be cut (indicated in black) to equalize track lengths.

The simplest option is to define a single period that contains representations resulting
from cutting the content to match the shortest common time span, thereby covering the
entire period with samples. Depending on the nature of the data that is removed, this
may or may not be acceptable.

17.1. Offer content with imperfectly aligned tracks§

Figure 24 Content may be padded (indicated in green) to equalize track lengths.

If you wish to preserve track contents in their entirety, the most interoperable option is
to add padding samples (e.g. silence or black frames) to all tracks to ensure that all
representations have enough data to cover the entire period with samples. This may
require customization of the encoding process, as the padding must match the codec
configuration of the real content and might be impractical to add after the real content
has already been encoded.

Figure 25 New periods may be started at any change in the set of available tracks.

Another option that preserves track contents is to split the content into multiple periods
that each contain a different set of representations, starting a new period whenever a
track starts or ends. This enables you to ensure every representations covers its period
with samples. The upside of this approach is that it can be done easily, requiring only
manipulation of the MPD. The downside is that some clients may be unable to
seamlessly play across every period transition.

Figure 26 You may combine the different approaches, cutting in some places (black), padding in others
(green) and defining multiple periods as needed.

You may wish to combine the different approaches, depending on the track, to achieve
the optimal result.

Some clients are known to fail when transitioning from a period with audio and video to
a period with only one of these components. You should avoid such transitions unless
you have exact knowledge of the capabilities of your clients.

There exist scenarios where you would wish to split a period in two. Common reasons
would be:

This example shows how an existing period can be split in a way that clients capable of
seamless period-connected playback do not experience interruptions in playback
among representations that are present both before and after the split.

Our starting point is a presentation with a single period that contains an audio
representation with short samples and a video representation with slightly longer
samples, so that media segment start points do not always overlap.

17.2. Split a period§

to insert an ad period in the middle of an existing period.

parameters of one adaptation set change (e.g. KID or display aspect ratio), requiring
a new period to update signaling.

some adaptation sets become available or unavailable (e.g. different languages).

Figure 27 Presentation with one period, before splitting. Blue is a segment, yellow is a sample. Duration
in arbitrary units is listed on samples. Segment durations are taken to be the sum of sample durations.

presentationTimeOffset may have any value - it is listed because will be referenced later.

Let’s split this period at position 220. This split occurs during segment 3 for both
representations and during sample 8 and sample 5 of the audio and video
representation, respectively.

The mechanism that enables period splitting in the middle of a segment is the following:

NOTE: Periods may be split at any point in time as long as both sides of the split
remain in conformance to this document (e.g. each contains at least 1 media
segment). Furthermore, period splitting does not require manipulation of the
segments themselves, only manipulation of the MPD.

a media segment that overlaps a period boundary exists in both periods.

representations that are split are signaled in the MPD as period-connected.

a representation that is period-connected with a representation in a previous
period is marked with the period connectivity descriptor.

clients are expected to deduplicate boundary-overlapping media segments for
representations on which period connectivity is signaled, if necessary for seamless

After splitting the example presentation, we arrive at the following structure.

playback (implementation-specific).

clients are expected to present only the samples that are within the bounds of the
current period (may be limited by client platform capabilities).

Figure 28 Presentation with two periods, after splitting. Audio segment 3 and video segment 3 are
shared by both periods, with the connectivity signaling indicating that seamless playback with de-

duplicating behavior is expected from clients.

If indexed addressing is used, both periods will reference all segments as both periods
will use the same unmodified index segment. Clients are expected to ignore media
segments that fall outside the period bounds.

Simple addressing has significant limitations on alignment at period start,
making it typically unsuitable for some multi-period scenarios. See § 18.4.2

Moving the period start point (simple addressing).

Other periods (e.g. ads) may be inserted between the two periods resulting from the
split. This does not affect the addressing and timing of the two periods.

In encrypted content, the default_KID of a representation might need to be changed at
certain points in time. Often, the changes are closely synchronized in different
representations.

To perform the default_KID change, start a new period on every change, treating each
representation as an independently changing element. With proper signaling, clients can
perform this change seamlessly.

Figure 29 A change in default_KID starts a new period. Orange indicates audio and yellow video
representation.

The same pattern can also be applied to other changes in representation configuration.

This section defines the addressing modes that can be used for referencing media
segments, initialization segments and index segments in interopreable DASH
presentations.

17.3. Change the default_KID§

18. Segment addressing modes§

Addressing modes not defined in this chapter SHALL NOT be used by DASH services.
Clients SHOULD support all addressing modes defined in this chapter.

All representations in the same adaptation set SHALL use the same addressing mode.
Representations in different adaptation sets MAY use different addressing modes.
Period-connected representations SHALL use the same addressing mode in every
period.

You SHOULD choose the addressing mode based on the nature of the content:

Use explicit addressing.

Use indexed addressing or explicit addressing.

A service MAY use simple addressing which enables the packager logic to be very simple.
This simplicity comes at a cost of reduced applicability to multi-period scenarios and
reduced client compatibility.

Indexed addressing enables all data associated with a single representation to be stored
in a single CMAF track file from which byte ranges are served to clients to supply media
segments, the initialization segment and the index segment. This gives it some unique
advantages:

A representation that uses indexed addressing consists of a CMAF track file containing
an index segment, an initialization segment and a sequence of media segments.

Clauses in section only apply to representations that use indexed addressing.

� Content generated on the fly

� Content generated in advance of publishing

A single large file is more efficient to transfer and cache than 100 000 or more small
files, reducing computational and I/O overhead.

CDNs are aware of the nature of byte-range requests and can preemptively read-
ahead to fill the cache ahead of playback.

18.1. Indexed addressing§

NOTE: This addressing mode is sometimes called "SegmentBase" in other
documents.

Figure 30 Indexed addressing is based on an index segment that references all media segments.

The MPD defines the byte range in the CMAF track file that contains the index segment.
The index segment informs the client of all the media segments that exist, the time
spans they cover on the sample timeline and their byte ranges.

Multiple representations SHALL NOT be stored in the same CMAF track file (i.e. no
multiplexed representations are to be used).

At least one Representation/BaseURL element SHALL be present in the MPD, containing a
URL pointing to the CMAF track file.

The SegmentBase@indexRange attribute SHALL be present in the MPD. The value of this
attribute identifies the byte range of the index segment in the CMAF track file ([DASH]
5.3.9.2). The value is a byte-range-spec as defined in [RFC7233], referencing a single range
of bytes.

The SegmentBase@timescale attribute SHALL be present and its value SHALL match the
value of the timescale field in the index segment (in the [ISOBMFF] sidx box) and the
value of the timescale field in the initialization segment (in the tkhd box [ISOBMFF]).

The SegmentBase/Initialization@range attribute SHALL identify the byte range of the
initialization segment in the CMAF track file. The value is a byte-range-spec as defined in

NOTE: [DASH] makes a distinction between "segment" (HTTP-addressable entity)
and "subsegment" (byte range of an HTTP-addressable entity). This document does
not make such a distinction and has no concept of subsegments. Usage of "segment"
here matches the definition of CMAF segment [CMAF].

[RFC7233], referencing a single range of bytes. The Initialization@sourceURL attribute
SHALL NOT be used.

The index segment SHALL consist of a single Segment Index Box (sidx) as defined by
[ISOBMFF]. The field layout of this data structure is as follows:

aligned(8) class SegmentIndexBox extends FullBox('sidx', version, 0) {
 unsigned int(32) reference_ID;
 unsigned int(32) timescale;

 if (version==0) {

EXAMPLE 7
Below is an example of common usage of indexed addressing.

The example defines a timescale of 48000 units per second, with the period starting
at position 8100 (or 0.16875 seconds) on the sample timeline. The client can use the
index segment referenced by indexRange to determine where the media segment
containing position 8100 (and all other media segments) can be found. The byte
range of the initialization segment is also provided.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period>
 <AdaptationSet>
 <Representation>
 <BaseURL>showreel_audio_dashinit.mp4</BaseURL>
 <SegmentBase timescale="48000" presentationTimeOffset="8100" indexRange="848-999
 <Initialization range="0-847"/>
 </SegmentBase>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted -
this is not a fully functional MPD file.

¶

18.2. Structure of the index segment§

 unsigned int(32) earliest_presentation_time;
 unsigned int(32) first_offset;
 }
 else {
 unsigned int(64) earliest_presentation_time;
 unsigned int(64) first_offset;
 }

 unsigned int(16) reserved = 0;
 unsigned int(16) reference_count;

 for (i = 1; i <= reference_count; i++)
 {
 bit (1) reference_type;
 unsigned int(31) referenced_size;
 unsigned int(32) subsegment_duration;
 bit(1) starts_with_SAP;
 unsigned int(3) SAP_type;
 unsigned int(28) SAP_delta_time;
 }
}

The values of the fields SHOULD be determined as follows:

The track_ID of the [ISOBMFF] track that contains the data of this representation.

Same as the timescale field of the Media Header Box and same as the
SegmentBase@timescale attribute in the MPD.

The start timestamp of the first media segment on the sample timeline, in timescale
units.

Distance from the end of the index segment to the first media segment, in bytes.
For example, 0 indicates that the first media segment immediately follows the index
segment.

NOTE: The normative definitions of the fields are provided by [ISOBMFF]. This
document describes how to determine the correct values, relating the fields to DASH
specific concepts.

reference_ID

timescale

earliest_presentation_time

first_offset

Total number of media segments referenced by the index segment.

0

Size of the media segment in bytes. Media segments are assumed to be
consecutive, so this is also the distance to the start of the next media segment.

Duration of the media segment in timescale units.

1

Either 1 or 2 , depending on the sample structure in the media segment.

0

When splitting periods in two or performing other types of editorial timing adjustments,
a service might want to start a period at a point after the "natural" start point of the
representations within.

For representations that use indexed addressing, perform the following adjustments to
set a new period start point:

A representation that uses explicit addressing consists of a set of media segments
accessed via URLs constructed using a template defined in the MPD, with the exact

reference_count

reference_type

referenced_size

subsegment_duration

starts_with_SAP

SAP_type

SAP_delta_time

ISSUE 3 We need to clarify how to determine the right value for SAP_type GitHub
#235.

¶

18.2.1. Moving the period start point (indexed addressing)§

1. Update SegmentBase@presentationTimeOffset to indicate the desired start point on
the sample timeline.

2. Update Period@duration to match the new duration.

18.3. Explicit addressing§

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/235
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/235

sample timeline time span covered by the samples in each media segment described in
the MPD.

Clauses in section only apply to representations that use explicit addressing.

Figure 31 Explicit addressing uses a segment template that is combined with explicitly defined time
spans for each media segment in order to reference media segments, either by start time or by

sequence number.

The MPD SHALL contain a SegmentTemplate/SegmentTimeline element, containing a set of
segment references that satisfies the requirements defined in this document. The
segment references exist as a sequence of S elements, each of which references one or
more media segments with start time S@t and duration S@d timescale units on the
sample timeline ([DASH] 5.3.9.6). The SegmentTemplate@duration attribute is not present
([DASH] 5.3.9.2).

To enable concise segment reference definitions, an S element may represent a
repeating segment reference that indicates a number of repeated consecutive media
segments with the same duration. The value of S@r indicates the number of additional
consecutive media segments that exist ([DASH] 5.3.9.6).

NOTE: This addressing mode is sometimes called "SegmentTemplate with
SegmentTimeline" in other documents.

NOTE: Only additional segment references are counted by @r , so S@r=5 indicates a
total of 6 consecutive media segments with the same duration.

The segment start point is calculated by adding the segment start point and duration of
the previous media segment, unless S@t is specified in which case S@t is the segment
start point on the sample timeline ([DASH] 5.3.9.6).

The value of S@r is nonnegative, except for the last S element which MAY have a
negative value in S@r ([DASH] 5.3.9.6), indicating that the repeated segment references
continue indefinitely up to a media segment that either ends at or overlaps the period
end point.

Updates to the MPD of a dynamic presentation MAY add more S elements, remove
expired S elements, increment SegmentTemplate@startNumber , add the S@t attribute to
the first S element or increase the value of S@r on the last S element but SHALL NOT
otherwise modify existing S elements.

The S@n attribute SHALL NOT be used - segment numbers form a continuous sequence
starting with SegmentTemplate@startNumber .

The SegmentTemplate@eptDelta attribute SHALL NOT be present. The information
represented by this attribute can be calculated independently and having it be present
would only create additional possibility for conflicting data.

The SegmentTemplate@media attribute SHALL contain the URL template for referencing
media segments. The SegmentTemplate@initialization attribute SHALL contain the URL
template for referencing initialization segments.

Either the $Time$ or $Number$ template variable SHALL be present in
SegmentTemplate@media to uniquely identify media segments:

If using $Number$ addressing, the number of the first segment reference is defined
by SegmentTemplate@startNumber (default value 1) ([DASH] 5.3.9.5.3).

If using $Time$ addressing, the value for each segment reference is the segment
start point on the sample timeline, in timescale units ([DASH] 5.3.9.5.3).

EXAMPLE 8
Below is an example of common usage of explicit addressing.

The example defines 225 media segments starting at position 900 (or 0.9 seconds) on
the sample timeline and lasting for a total of 900.225 seconds. The period is only 900
seconds long, so the last 0.225 seconds of content is clipped (out of bounds samples
may also simply be omitted from the last media segment). The period start point is at
position 900 (or 0.9 seconds) on the sample timeline which matches the start
position of the first media segment found at the relative URL video/900.m4s .

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period duration="PT900S">
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="900"
 media="video/$Time$.m4s" initialization="video/init.mp4">
 <SegmentTimeline>
 <S t="900" d="4001" r="224" />
 </SegmentTimeline>
 </SegmentTemplate>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted -
this is not a fully functional MPD file.

¶

EXAMPLE 9
Below is an example of explicit addressing used in a scenario where different media
segments have different durations (e.g. due to encoder limitations).

The example defines a sequence of 11 media segments starting at position 120 (or
0.12 seconds) on the sample timeline and lasting for a total of 95520 units at a
timescale of 1000 units per second (which results in 95.52 seconds of data). The
period start point on the sample timeline is at position 810 (or 0.81 seconds), which is
within the first media segment, found at the relative URL video/120.m4s . The fifth
media segment repeats once, resulting in a sixth media segment with the same
duration.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period>
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="810"
 media="video/$Time$.m4s" initialization="video/init.mp4">
 <SegmentTimeline>
 <S t="120" d="8520"/>
 <S d="8640"/>
 <S d="8600"/>
 <S d="8680"/>
 <S d="9360" r="1"/>
 <S d="8480"/>
 <S d="9080"/>
 <S d="6440"/>
 <S d="10000"/>
 <S d="8360"/>
 </SegmentTimeline>
 </SegmentTemplate>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted -
this is not a fully functional MPD file.

¶

When splitting periods in two or performing other types of editorial timing adjustments,
a service might want to start a period at a point after the "natural" start point of the
representations within.

For representations that use explicit addressing, perform the following adjustments to
set a new period start point:

A representation that uses simple addressing consists of a set of media segments
accessed via URLs constructed using a template defined in the MPD, with the MPD
describing the nominal time span of the sample timeline covered by each media
segment.

Simple addressing defines the nominal time span of each media segment in
the MPD. The true time span covered by samples within the media segment

can be slightly different than the nominal time span. See § 18.4.1 Inaccuracy in
media segment timing when using simple addressing.

Clauses in section only apply to representations that use simple addressing.

18.3.1. Moving the period start point (explicit addressing)§

1. Update SegmentTemplate@presentationTimeOffset to indicate the desired start point
on the sample timeline.

2. Update Period@duration to match the new duration.

3. Remove any unnecessary segment references.

4. If using the $Number$ template variable, increment SegmentTemplate@startNumber
by the number of media segments removed from the beginning of the
representation.

NOTE: See § 9 Representation timing and § 13.6.3 Removing content from the MPD
to understand the constraints that apply to segment reference removal.

18.4. Simple addressing§

NOTE: This addressing mode is sometimes called "SegmentTemplate without
SegmentTimeline" in other documents.

Figure 32 Simple addressing uses a segment template that is combined with approximate first media
segment timing information and an average media segment duration in order to reference media

segments, either by start time or by sequence number. Note that @eptDelta does not affect the
generated paths!

The SegmentTemplate@duration attribute defines the nominal duration of a media
segment in timescale units ([DASH] 5.3.9.2).

The set of segment references consists of the first media segment starting
SegmentTemplate@eptDelta timescale units relative to the period start point and all other
media segments following in a consecutive series of equal time spans of
SegmentTemplate@duration timescale units, ending with a media segment that ends at or
overlaps the period end time. The @eptDelta attribute SHALL be present if its value is not
zero.

NOTE: @eptDelta is expressed as an offset from the period start point to the
segment start point of the first media segment ([DASH] 5.3.9.2). In other words, the
value will be negative if the first media segment starts before the period start point.

@eptDelta is new in [DASH] 4th edition (published 2020) and DASH client
support is not yet widespread. Clients that do not implement support for
@eptDelta may fail to correctly begin or end playback of periods that use
simple addressing with @eptDelta != 0 . If the client cannot be upgraded to

consider @eptDelta then you are advised to use explicit addressing with such
content.

The SegmentTemplate@media attribute SHALL contain the URL template for referencing
media segments. The SegmentTemplate@initialization attribute SHALL contain the URL
template for referencing initialization segments.

Either the $Time$ or $Number$ template variable SHALL be present in
SegmentTemplate@media to uniquely identify media segments:

If using $Number$ addressing, the number of the first segment reference is defined
by SegmentTemplate@startNumber (default value 1) ([DASH] 5.3.9.5.3).

If using $Time$ addressing, the template value for each segment reference is the
segment start point on the sample timeline minus @eptDelta ([DASH] 5.3.9.5.3).

When using simple addressing, the samples contained in a media segment MAY cover a
different time span on the sample timeline than what is indicated by the nominal timing
in the MPD, as long as no constraints defined in this document are violated by this
deviation.

EXAMPLE 10
Below is an example of common usage of simple addressing.

The example defines a sample timeline with a timescale of 1000 units per second,
with the period starting at position 900 (or 0.9 seconds) on the sample timeline and
the first media segment starting at position 400 (or 0.4 seconds). The average
duration of a media segment is 4001 (4.001 seconds). Media segment numbering
starts at 800, so the first media segment is found at the relative URL video/800.m4s .
The sequence of media segments continues to the end of the period, which is 900
seconds long, making for a total of 226 defined segment references.

The period start point is 500 milliseconds after the segment start point of the first
media segment and the period end point is approximately 275 milliseconds after the
segment start point of the last media segment. The real timing of the samples within
the media segments may differ from these nominal values in the MPD, to the extent
permitted by the timing model.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period duration="PT900S">
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="900" eptDelta="-500"
 media="video/$Number$.m4s" initialization="video/init.mp4"
 duration="4001" startNumber="800" />
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted -
this is not a fully functional MPD file.

¶

18.4.1. Inaccuracy in media segment timing when using simple addressing§

Figure 33 Simple addressing relaxes the requirement on media segment contents matching the sample
timeline. Red boxes indicate samples.

The allowed deviation is defined as the maximum offset between the edges of the
nominal time span (as defined by the MPD) and the edges of the true time span (as
defined by the contents of the media segment). The deviation is evaluated separately for
each edge.

This allowed deviation does not relax any requirements that do not explicitly
define an exception.

The maximum deviation of either edge is 50% of the nominal media segment duration
and MAY be in either direction ([DASH] 7.2.1).

Allowing inaccurate timing is intended to enable reasoning on the sample timeline using
average values for media segment timing. If the addressing data says that a media
segment contains 4 seconds of data on average, a client can predict with reasonable
accuracy which samples are found in which media segments, while at the same time the
service is not required to publish per-segment timing data in the MPD. It is expected
that the content is packaged with this contraint in mind (i.e. every segment cannot be
inaccurate in the same direction - a shorter segment now implies a longer segment in
the future to make up for it).

To ensure that no gaps in the timeline are introduced by the allowed inaccuracy,
additional constraints apply to the contents of media segments at the edges of a period:

NOTE: This results in a maximum true duration of 200% (+50% outward extension
on both edges) and a minimum true duration of 1 sample (-50% inward from both
edges would result in 0 duration but empty media segments are not allowed).

The [=media segment] that starts at or overlaps the period start point SHALL
contain a sample that starts at or overlaps the period start point.

When splitting periods in two or performing other types of editorial timing adjustments,
a service might want to start a period at a point after the "natural" start point of the
representations within. This can be challenging when using simple addressing.

The [=media segment] that ends at or overlaps the period end point SHALL contain
a sample that ends at or overlaps the period end point.

EXAMPLE 11
Consider a media segment with a nominal start time of 8 seconds from period start
and a nominal duration of 4 seconds, within a period of unlimited duration.

The following are all valid contents for such a media segment:

Near period boundaries, all the constraints of timing and addressing must still be
respected! Consider a media segment with a nominal start time of 0 seconds from
period start and a nominal duration of 4 seconds. If such a media segment contained
samples from 1 to 5 seconds (offset of 1 second away from zero point at both ends,
which is within acceptable limits) it would be nonconforming because of the
requirement that the first media segment contain a media sample that starts at or
overlaps the period start point.

¶

samples from 8 to 12 seconds (perfect accuracy)

samples from 6 to 14 seconds (maximally large segment allowed, 50% increase
from both ends)

samples from 9.9 to 10 seconds (near-minimally small segment; while we allow a
50% decrease from both ends, potentially resulting in zero duration, every
segment must still contain at least one sample)

samples from 6 to 10 seconds (maximal offset toward zero point at both ends)

samples from 10 to 14 seconds (maximal offset away from zero point at both
ends)

18.4.2. Moving the period start point (simple addressing)§

The media segment that overlaps the period start point must contain a
sample that starts at or overlaps the period start point. Likewise, the media
segment that overlaps the period end point must contain a sample that ends
at or overlaps the period end point. These constraints are defined in § 18.4.1

Inaccuracy in media segment timing when using simple addressing and
typically make it impossible to move the period start point or split a period

when using simple addressing and taking advantage of the inaccuracy allowed
to exist between nominal timing of the sample timeline and the true contents

of the media segments.

The rest of this chapter assumes that the nominal timing of media segments matches
the real timing. If you cannot satisfy this constraint but still wish to move the period start
point, convert to explicit addressing. See § 18.4.3 Converting simple addressing to
explicit addressing.

To move the period start point for representations that use simple addressing without
timing inaccuracy:

1. Update SegmentTemplate@presentationTimeOffset to indicate the desired period start
point on the sample timeline.

2. Update SegmentTemplate@eptDelta to indicate the relative position of the segment
start point of the first media segment from the start of the period (with a negative
sign indicating the segment start point is before the period start point).

3. If using the $Time$ template variable and if the value of @eptDelta changed in the
previous step, rename all media segments to conform to the new pattern generated
by the URL template. The pattern will change whenever @eptDelta changes because
$Time$ refers not only to the segment start point but also includes @eptDelta .

4. If using the $Number$ template variable, increment SegmentTemplate@startNumber
by the number of media segments removed from the beginning of the
representation.

5. Update Period@duration to match the new duration.

@eptDelta is new in [DASH] 4th edition (published 2020). If the resulting
SegmentTemplate@eptDelta value is not zero, DASH clients that do not support

@eptDelta may exhibit incorrect behavior when transitioning between
periods. The only workaround is to either convert to explicit addressing or to
choose a period start point that overlaps with the segment start points of all

representations in all adaptation sets that use simple addressing! Such points
might not exist, depending on the media segment structure of the

presentation.

It may sometimes be desirable to convert a presentation from simple addressing to
explicit addressing. This chapter provides an algorithm to do this.

Simple addressing allows for inaccuracy in media segment timing. No
inaccuracy is allowed by explicit addressing. The mechanism of conversion

described here is only valid when there is no inaccuracy. If the nominal time
spans in original the MPD differ from the true time spans of the media

segments, re-package the content from scratch using explicit addressing
instead of converting the MPD.

To perform the conversion, execute the following steps:

18.4.3. Converting simple addressing to explicit addressing§

1. Calculate the number of media segments in the representation as SegmentCount =

Ceil((AsSeconds(Period@duration) - AsSeconds(SegmentTempalte@eptDelta)) / (

SegmentTemplate@duration / SegmentTemplate@timescale)) .

2. Update the MPD.

1. Add a single SegmentTemplate/SegmentTimeline element.

2. Add a single SegmentTimeline/S element.

3. Set S@t to equal SegmentTemplate@presentationTimeOffset plus @eptDelta .

4. Set S@d to equal SegmentTemplate@duration .

5. Remove SegmentTemplate@duration .

6. Set S@r to SegmentCount - 1 .

7. Remove SegmentTemplate@eptDelta . It is not needed nor permitted with explicit
addressing.

3. If using $Time$ addressing in SegmentTemplate@media , rename all media segments
to match the segment start point in the template variable (simple addressing uses
segment start point minus @eptDelta for $Time$).

EXAMPLE 12
Below is an example of a simple addressing representation before conversion.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period duration="PT900S">
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="900" eptDelta="-500"
 media="video/$Number$.m4s" initialization="video/init.mp4"
 duration="4001" startNumber="800" />
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

As part of the conversion, we calculate SegmentCount = Ceil((900 - (-0.5)) / (4001 / 1000)) =

226 .

After conversion, we arrive at the following result.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period duration="PT900S">
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="900"
 media="video/$Number$.m4s" initialization="video/init.mp4"
 startNumber="800">
 <SegmentTimeline>
 <S t="400" d="4001" r="224" />
 </SegmentTimeline>
 </SegmentTemplate>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted -
the above are not fully functional MPD files.

¶

[ECMASCRIPT] is unable to accurately represent numeric values greater than 253

(9007199254740991) using built-in types. Therefore, interoperable services cannot use
such values.

All timescales are start times used in a DASH presentations SHALL be sufficiently small
that no timecode value exceeding 253 will be encountered, even during the publishing of
long-lasting live services.

All units expressed in MPD fields of datatype xs:duration SHALL be treated as fixed size:

MPD fields having datatype xs:duration SHALL NOT use the year and month units and
SHOULD be expressed as a count of seconds, without using any of the larger units.

19. Large timescales and time values§

NOTE: This may require the use of 64-bit fields, although the values must still be
limited to under 253.

EXAMPLE 13

The issue does not arise with the common 90 KHz timescale. Counting time since the
Unix epoch until 11 November 2019 we get 141721093260000 which is well within the
allowed range of values.

Another common timescale is 10000000 (10 million timescale units per second) often
used by Smooth Streaming. Counting time since the Unix epoch until 11 November
2019 we get 15746788140000000 which does exceed the critical value and will result in
broken playback on many clients! To correct such an error, use a smaller timescale or
a MPD timeline zero point that is not so far in the past.

¶

20. Representing durations in XML§

60S = 1M (minute)

60M = 1H

24H = 1D

30D = 1M (month)

12M = 1Y

Information technology — Multimedia application format (MPEG-A) — Part 19: Common
media application format (CMAF) for segmented media. February 2024. Published.
URL: https://www.iso.org/standard/85623.html

Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1:
Media presentation description and segment formats. Under development. URL:
https://www.iso.org/standard/89027.html

Index§

Terms defined by this specification§

addressing modes, in § 18

availability window, in § 13.3

available, in § 13.3

dynamic presentation, in § 7

effective availability start time, in § 7

effective time shift buffer, in § 13.5

explicit addressing, in § 18.3

indexed addressing, in § 18.1

media segment, in § 11

MPD, in § 4.1

MPD refreshes, in § 13.7

MPD timeline, in § 6

MPD validity duration, in § 13.6.1

period-connected, in § 12

periods, in § 8

presentation, in § 4.1

presentation delay, in § 13.5

Representations, in § 9

sample timeline, in § 9.1

segment end point, in § 11

segment references, in § 9

segment start point, in § 11

simple addressing, in § 18.4

static presentation, in § 7

timescale, in § 9.1

timescale units, in § 9.1

time shift, in § 13.4

time shift buffer, in § 13.4

unnecessary segment reference, in
§ 9.2.3

wall clock, in § 13.1

References§

Normative References§

[CMAF]

[DASH]

https://www.iso.org/standard/85623.html
https://www.iso.org/standard/85623.html
https://www.iso.org/standard/85623.html
https://www.iso.org/standard/89027.html
https://www.iso.org/standard/89027.html
https://www.iso.org/standard/89027.html

Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1:
Media presentation description and segment formats — Amendment 1: Media
presentation insertion event, nonlinear playback and other extensions. Deleted. URL:
https://www.iso.org/standard/83315.html

Information technology — Coding of audio-visual objects — Part 12: ISO base media file
format. Under development. URL: https://www.iso.org/standard/85596.html

Information technology — Generic coding of moving pictures and associated audio
information — Part 1: Systems. December 2023. Published. URL:
https://www.iso.org/standard/87619.html

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best
Current Practice. URL: https://datatracker.ietf.org/doc/html/rfc2119

R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Conditional
Requests. June 2014. Proposed Standard. URL:
https://httpwg.org/specs/rfc7232.html

R. Fielding, Ed.; M. Nottingham, Ed.; J. Reschke, Ed.. HTTP Semantics. June 2022.
Internet Standard. URL: https://httpwg.org/specs/rfc9110.html

ATSC Standard: A/300:2017 “ATSC3.0 System”. URL: https://https://www.atsc.org/wp-
content/uploads/2017/10/A300-2017-ATSC-3-System-Standard-1.pdf

ETSI TS 103 285 V1.2.1 (2018-03): Digital Video Broadcasting (DVB); MPEG-DASH Profile
for Transport of ISO BMFF Based DVB Services over IP Based Networks. March 2018.
Published. URL:
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v
010201p.pdf

ECMAScript Language Specification. URL: https://tc39.es/ecma262/multipage/

[DASH-CMAF]

[ISOBMFF]

[MPEG2TS]

[RFC2119]

[RFC7232]

[RFC7233]

Informative References§

[ATSC3]

[DVB-DASH]

[ECMASCRIPT]

https://www.iso.org/standard/83315.html
https://www.iso.org/standard/83315.html
https://www.iso.org/standard/83315.html
https://www.iso.org/standard/83315.html
https://www.iso.org/standard/85596.html
https://www.iso.org/standard/85596.html
https://www.iso.org/standard/85596.html
https://www.iso.org/standard/87619.html
https://www.iso.org/standard/87619.html
https://www.iso.org/standard/87619.html
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://httpwg.org/specs/rfc7232.html
https://httpwg.org/specs/rfc7232.html
https://httpwg.org/specs/rfc7232.html
https://httpwg.org/specs/rfc9110.html
https://httpwg.org/specs/rfc9110.html
https://https//www.atsc.org/wp-content/uploads/2017/10/A300-2017-ATSC-3-System-Standard-1.pdf
https://https//www.atsc.org/wp-content/uploads/2017/10/A300-2017-ATSC-3-System-Standard-1.pdf
https://https//www.atsc.org/wp-content/uploads/2017/10/A300-2017-ATSC-3-System-Standard-1.pdf
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
https://tc39.es/ecma262/multipage/
https://tc39.es/ecma262/multipage/

Joey Parrish; Greg Freedman. Encrypted Media Extensions. URL:
https://w3c.github.io/encrypted-media/

R. Pantos, Ed.; W. May. HTTP Live Streaming. August 2017. Informational. URL:
https://www.rfc-editor.org/rfc/rfc8216

IERS Bulletin C (leap second announcements). URL:
https://datacenter.iers.org/data/latestVersion/16_BULLETIN_C16.txt

Jean-Yves Avenard; Mark Watson. Media Source Extensions™. URL:
https://w3c.github.io/media-source/

[ENCRYPTED-MEDIA]

[HLS]

[LEAP-SECONDS]

[MEDIA-SOURCE]

Issues Index§

�
ISSUE 1 We could benefit from some detailed examples here, especially as clock
sync is such a critical element of live services.

�
ISSUE 2 Can we recommend some meaningful algorithm for this? Something to use
as a starting point would be nice to provide.

�
ISSUE 3 We need to clarify how to determine the right value for SAP_type GitHub
#235.

https://w3c.github.io/encrypted-media/
https://w3c.github.io/encrypted-media/
https://www.rfc-editor.org/rfc/rfc8216
https://www.rfc-editor.org/rfc/rfc8216
https://datacenter.iers.org/data/latestVersion/16_BULLETIN_C16.txt
https://datacenter.iers.org/data/latestVersion/16_BULLETIN_C16.txt
https://w3c.github.io/media-source/
https://w3c.github.io/media-source/
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/235
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/235

