
DASH-IF implementation guidelines:
content protection and security

https://dashif.org/Guidelines-Security/

GitHub
GitHub
Inline In Spec

DASH Industry Forum

Table of Contents

1 Purpose

2 Scope

3 Interpretation

4 Disclaimer

5 Core concepts of content protection and security

6 Client reference architecture for encrypted content playback

7 Content encryption and DRM

7.1 Robustness

Commit Snapshot, 24 October 2024

This version:

Issue Tracking:

Editor:

https://dashif.org/
https://dashif.org/
https://dashif.org/Guidelines-Security/
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues
https://github.com/Dash-Industry-Forum/Guidelines-Security/issues

7.2 W3C Encrypted Media Extensions

8 Content protection constraints for CMAF
8.1 Content protection data in CMAF containers

9 Encryption and DRM signaling in the MPD
9.1 Signaling presence of encrypted content

9.2 default_KID defines the scope of DRM system interactions

9.2.1 default_KID in hierarchical/derived/variant key scenarios

9.3 Providing default DRM system configuration

9.4 Delivering updates to DRM system internal state

10 DASH-IF interoperable license request model

10.1 Proof of authorization

10.1.1 Obtaining authorization tokens

10.1.2 Issuing authorization tokens

10.1.3 Embedding secrets in authorization tokens

10.1.4 Attaching authorization tokens to license requests

10.2 Problem signaling and handling

10.2.1 Problem type: not authorized to access content

10.2.2 Problem type: insufficient proof of authorization

10.3 Possible deployment architectures

10.4 Passing a content ID to services

11 DRM workflows in DASH clients
11.1 Capability detection

11.2 Selecting the DRM system

11.3 Activating the DRM system

11.4 Handling unavailability of content keys

11.5 Handling changes in required and available content keys

11.6 Content protection policies

11.7 Performing license requests

11.7.1 Efficient license acquisition

12 Periodic re-authorization

13 Controlling access rights with a key hierarchy

14 Use of W3C Clear Key with DASH

15 XML Schema for DASH-IF MPD extensions

16 HTTPS and DASH

Index
Terms defined by this specification

References
Normative References

Informative References

Issues Index

The guidelines defined in this document support the creation of protected interoperable
services for high-quality video distribution based on MPEG-DASH and related standards.
These guidelines are provided in order to address DASH-IF members' needs and industry
best practices. The guidelines support the implementation of conforming service offerings
as well as DASH client implementations.

While alternative interpretations may be equally valid in terms of standards conformance,
services and clients created following the guidelines defined in this document can be
expected to exhibit highly interoperable behavior between different implementations.

This document is an update to the "Content Protection and Security" section of the DASH-IF
IOP Guidelines version 4.3. The scope remains the same, giving guidelines for interoperable
behaviors of clients in front of well formed encrypted content. This means:

1. Purpose§

2. Scope§

Updated encrypted content constraints for supporting CMAF. This includes the addition
of the cbcs scheme support and recommendation for encrypting content when
available using both cbcs and cenc protection schemes. Note that compared to DASH-IF
IOP 4.3, there are no changes in the recommendations for using default_KID and pssh

elements.

In addition, this document:

Requirements in this document describe service and client behaviors that DASH-IF
considers interoperable.

If a service provider follows these requirements in a published DASH service, the published
DASH service is likely to experience successful playback on a wide variety of clients and
exhibit graceful degradation when a client does not support all features used by the service.

If a client implementer follows the client-oriented requirements described in this
document, the DASH client will play content conforming to this document provided that the
client device media platform supports all features used by a particular DASH service (e.g. the
codecs and DRM systems).

This document uses statements of fact when describing normative requirements defined in
referenced specifications such as [DASH] and [CMAF]. References are typically provided to
indicate where the requirements are defined.

Added discussions on compliance and robustness rules and their impact on the choices
of the DRM client to instantiate.

Clarified periodic reauthorization mechanisms, separating the topic of key hierarchy
from periodic reauthentication - the two are now separate chapters.

Clarified the client reference architecture which is an MSE/EME type of player, more
precisely connecting between the DASH/DASH-IF/CMAF content format specifications
and W3C EME.

Introduces the Interoperable license request model that describes how players take
content and consume it in ways that make sense on a platform that supports EME.
From the Platform capabilities discovery and DRM selection to the license request
protocol, this optional request model allows a player to obtain authorization tokens
that can be used for retrieving licenses and content keys from a license server for
rendering content. Any processing step in the proposed model can be redefined by the
application logic.

Introduces DASH-IF XML schema where two elements are defined for supporting the
license request model. These elements are namely the laurl (license acquisition server
URL) and authzurl (Authorization server URL).

3. Interpretation§

[RFC2119] statements (e.g. "SHALL", "SHOULD" and "MAY") are used when this document
defines a new requirement or further constrains a requirement from a referenced
document.

There is no strict backward compatibility with previous versions - best practices change over
time and what was once considered sensible may be replaced by a superior approach later
on. Therefore, clients and services that were conforming to version N of this document are
not guaranteed to conform to version N+1.

This is a document made available by DASH-IF. The technology embodied in this document
may involve the use of intellectual property rights, including patents and patent applications
owned or controlled by any of the authors or developers of this document. No patent
license, either implied or express, is granted to you by this document. DASH-IF has made no
search or investigation for such rights and DASH-IF disclaims any duty to do so. The rights
and obligations which apply to DASH-IF documents, as such rights and obligations are set
forth and defined in the DASH-IF Bylaws and IPR Policy including, but not limited to, patent
and other intellectual property license rights and obligations. A copy of the DASH-IF Bylaws
and IPR Policy can be obtained at http://dashif.org/.

The material contained herein is provided on an "AS IS" basis and to the maximum extent
permitted by applicable law, this material is provided AS IS, and the authors and developers
of this material and DASH-IF hereby disclaim all other warranties and conditions, either
express, implied or statutory, including, but not limited to, any (if any) implied warranties,
duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or
completeness of responses, of workmanlike effort, and of lack of negligence.

In addition, this document may include references to documents and/or technologies
controlled by third parties. Those third party documents and technologies may be subject to
third party rules and licensing terms. No intellectual property license, either implied or

EXAMPLE 1
Statement of fact:

New or more constrained requirement:

¶

A DASH presentation is a sequence of consecutive non-overlapping periods [DASH].

Segments SHALL NOT use the MPEG-2 TS container format.

4. Disclaimer§

express, to any third party material is granted to you by this document or DASH-IF. DASH-IF
makes no any warranty whatsoever for such third party material.

Note that technologies included in this document and for which no test and conformance
material is provided, are only published as a candidate technologies, and may be removed if
no test material is provided before releasing a new version of this guidelines document. For
the availability of test material, please check http://www.dashif.org.

DASH-IF provides guidelines for using multiple DRM systems to access a DASH presentation
by adding encryption signaling and DRM system configuration to DASH content encrypted in
conformance to Common Encryption [CENC]. In addition to content authoring guidelines,
DASH-IF specifies interoperable workflows for DASH client interactions with DRM systems,
platform APIs and external services involved in content protection interactions.

Figure 1 A DRM system cooperates with the device’s media platform to enable playback of encrypted
content while protecting the decrypted samples and content keys against potential attacks. The DASH-IF

implementation guidelines focus on the signaling in the DASH presentation and the interactions of the DASH
client with other components.

This document does not define any DRM system. DASH-IF maintains a registry of DRM
system identifiers on dashif.org.

5. Core concepts of content protection and security§

https://dashif.org/identifiers/content_protection/

Common Encryption [CENC] specifies several protection schemes which can be applied by a
scrambling system and used by different DRM systems. The same encrypted DASH
presentation can be decrypted by different DRM systems if a DASH client is provided the
DRM system configuration for each DRM system, either in the MPD or at runtime.

A content key is a 128-bit key used by a DRM system to make content available for playback.
It is identified by a string called default_KID (or sometimes simply KID or "key ID"). The format
constraints of the string are defined in [CENC].

While the default_KID format visually resembles a UUID, it is not exactly the same.
UUIDs have constraints on the byte values permitted at certain positions in the
data structure, whereas [CENC] sets no constraints on the values in default_KID .
[CENC] defines only the format of the string and merely recommends that the

value in the string conform to UUID.

A content key and its identifier are shared between all DRM systems, whereas the
mechanisms used for key acquisition and content protection are largely DRM system
specific. Different DASH adaptation sets are often protected by different content keys.

A license is a data structure in a DRM system specific format that contains one or more
content keys and associates them with a policy that governs the usage of the content keys
(e.g. expiration time). The encapsulated content keys are typically encrypted and only
readable by the DRM system.

Different software architectural components are involved in playback of encrypted content.
The exact nature depends on the specific implementation. A high-level reference
architecture is described here.

EXAMPLE 2
Example default_KID : 72c3ed2c-7a5f-4aad-902f-cbef1efe89a9

¶

6. Client reference architecture for encrypted content playback§

Figure 2 Reference architecture for encrypted content playback.

The media platform provides one or more APIs that allow the device’s media playback and
DRM capabilities to be used by a DASH client. The DASH client is typically a library included
in an app. On some device types, the DASH client may be a part of the media platform.

This document assumes that the media platform exposes its encrypted content playback
features via an API similar to W3C Encrypted Media Extensions (EME) [encrypted-media].
The technical nature of the API may be different but EME-equivalent functionality is
expected.

The media platform often implements at least one DRM system. Additional DRM system
implementations can be included as libraries in the app.

A DRM system is an implementation of content keys management. It is made of two main
components: A license server for generating licenses and a DRM client for processing
licenses and enforcing the associated policies. On some paltforms, the DRM client may
handle the decryption of samples while on other platforms, decryption is handled by e.g.
hardware elements the DRM client interacts with.

The guidelines in this document define recommended workflows and default behavior for a
generic DASH client implementation that performs playback of encrypted content. In many
scenarios, the default behavior is sufficient. When deviation from the default behavior is
desired, solution-specific logic and configuration can be provided by the app. Extension

points are explicitly defined in the workflows at points where solution-specific decisions are
most appropriate.

A DASH presentation MAY provide some or all adaptation sets in encrypted form, requiring
the use of a DRM system to decrypt the content for playback. The duty of a DRM system is
to prevent disclosure of the content key and misuse of the decrypted content (e.g. recording
via screen capture software) and may be to decrypt content.

In a DASH presentation, every representation in an adaptation set SHALL be protected using
the same content key (identified by the same default_KID).

This means that if representations use different content keys, they must be in different
adaptation sets, even if they would otherwise (were they not encrypted) belong to the same
adaptation set. A urn:mpeg:dash:adaptation-set-switching:2016 supplemental property
descriptor ([DASH] 5.3.3.5) SHALL be used to signal that such adaptation sets are suitable
for switching.

Encrypted DASH content SHALL use either the cenc or the cbcs protection scheme defined
in [CENC]. cenc and cbcs are two mutually exclusive protection schemes. DASH content
encrypted according to the cenc protection scheme cannot be decrypted by a DRM system
supporting only the cbcs protection scheme and vice versa.

Some DRM system implementations support both protection schemes. Even when this is
the case, clients SHALL NOT concurrently consume encrypted content that uses different
protection schemes.

Representations in the same adaptation set SHALL use the same protection scheme.
Representations in different adaptation sets MAY use different protection schemes. If both
protection schemes are used in the same period, all encrypted representations in that
period SHALL be provided using both protection schemes. That is, the only permissible
scenario for using both protection schemes together is to offer them as equal alternatives
to target DASH clients with different capabilities.

Representations that contain the same media content using different protection schemes
SHOULD use different content keys. This protects against some cryptographic attacks
[MSPR-EncryptionModes].

7. Content encryption and DRM§

DRM systems define rules that govern how they can be implemented. These rules can
define different robustness levels which are typically used to differentiate implementations
based on their resistance to attacks. The set of robustness levels, their names and the
constraints that apply are all specific to each DRM system.

Policy associated with content can require a DRM system implementation to conform to a
certain robustness level, thereby ensuring that valuable content does not get presented on
potentially vulnerable implementations. This policy can be enforced on different levels,
depending on the DRM system:

Multiple implementations of a DRM system may be available to a DASH client, potentially at
different robustness levels. The DASH client must choose at media load time which DRM
system implementation to use. However, the required robustness level may be different for
different device types and is not expressed in the MPD. This decision is a matter of policy
and is impossible for a DASH client to determine on its own. Therefore, solution-specific
logic and configuration must inform the DASH client of the correct choice.

7.1. Robustness§

EXAMPLE 3

A hypothetical DRM system might define the following robustness levels:

¶

High - All cryptographic operations are performed on a separate CPU not accessible
to the device’s primary operating system (often called a trusted execution
environment). Decrypted data only exists in a memory region not accessible to the
device’s primary operating system (often called a secure media path).

Medium - All cryptographic operations are performed on a separate CPU not
accessible to the device’s primary operating system. Decrypted data may be passed
to the primary operating system’s media platform APIs.

Low - All operations are performed in software that can be inspected and modified
by the user. Obfuscation must be used to protect against analysis.

None - For development only. Implementation does not resist attacks.

1. A license server may refuse to provide content keys to implementations with
unacceptable robustness levels.

2. The DRM system may refuse to use content keys whose license requires a higher
robustness level than the implementation provides.

A DASH client SHALL enable solution-specific logic and configuration to specify the
robustness level of the DRM system implementation to be used. Depending on which DRM
system is used, this can be implemented by:

Whereas the DRM signaling in DASH deals with DRM systems, EME deals with key systems.
While similar in concept, they are not always the same thing. A single DRM system may be
implemented on a single device by multiple different key systems, with different codec
compatibility and functionality, potentially at different robustness levels.

Even if multiple variants are available, a DASH client SHOULD map each DRM system to a
single key system. The default key system SHOULD be the one the DASH client expects to
offer greatest compatibility with content (potentially at a low robustness level). The DASH
client SHOULD allow solution-specific logic and configuration to override the key system
chosen by default (e.g. to force the use of a high-robustness variant).

The structure of content protection related information in the CMAF containers used by
DASH is largely specified by [CMAF] and [CENC] (in particular section 8). This chapter

1. Changing the mapping of DRM system to key system in EME-based implementations
(see § 7.2 W3C Encrypted Media Extensions).

2. Specifying a minimum robustness level during capability detection (see § 11.1 Capability
detection).

7.2. W3C Encrypted Media Extensions§

EXAMPLE 4

A device may implement the "ExampleDRM" DRM system as a number of key systems:

¶

The key system "ExampleDRMvariant1" may support playback of encrypted H.264
and H.265 content at up to 1080p resolution with "low" robustness level.

The key system "ExampleDRMvariant2" may support playback of encrypted H.264
content at up to 4K resolution with "high" robustness level.

The key system "ExampleDRMvariant3" may support playback of encrypted H.265
content at up to 4K resolution with "high" robustness level.

8. Content protection constraints for CMAF§

outlines some additional requirements to ensure interoperable behavior of DASH clients
and services.

Initialization segments SHOULD NOT contain any moov/pssh box ([CMAF], section 7.4.3) and
DASH clients MAY ignore such boxes when encountered. Instead, pssh boxes required for
DRM system initialization are part of the DRM system configuration and SHOULD be placed
in the MPD as cenc:pssh elements in DRM system specific ContentProtection descriptors.

Protected content MAY be published without any pssh boxes in both the MPD and media
segments. All DRM system configuration can be provided at runtime, including the pssh box
data. See also § 9.3 Providing default DRM system configuration.

Media segments MAY contain moof/pssh boxes ([CMAF] 7.4.3) to provide updates to DRM
system internal state (e.g. to supply new leaf keys in a key hierarchy). See § 9.2.1 default_KID
in hierarchical/derived/variant key scenarios for an example.

This chapter describes the structure of content protection data in CMAF containers used to
provide encrypted content in a DASH presentation, summarizing the requirements defined
by [ISOBMFF], [DASH], [CENC], [CMAF] and other parts of DASH-IF implementation
guidelines.

DASH initialization segments contain:

NOTE: This document uses the cenc: prefix to reference the XML namespace
urn:mpeg:cenc:2013 [CENC].

NOTE: Placing the pssh boxes in the MPD has become common for purposes of
operational agility - it is often easier to update MPD files than rewrite initialization
segments when the default DRM system configuration needs to be updated or when a
new DRM system needs to be supported. Furthermore, in some scenarios the
appropriate set of pssh boxes is not known when the initialization segment is created.

NOTE: These state updates may be transparent to a DASH client on some media
platforms that intercept the moof/pssh boxes and supply them directly to the active DRM
system; on other media platforms, the DASH client may need to extract and forward the
moof/pssh boxes to the DRM system.

8.1. Content protection data in CMAF containers§

DASH media segments are composed of a single CMAF fragment that contains:

Zero or more moov/pssh "Protection System Specific Header" boxes ([CENC] 8.1) which
provide DRM system initialization data in DRM system specific format. This usage is
deprecated in favor of providing this data in the MPD. If both are present, the value in
the MPD is used. See § 9.3 Providing default DRM system configuration.

Exactly one moov/trak/mdia/minf/stbl/stsd/sinf/schm "Scheme Type" box ([ISOBMFF]
8.12.5) identifying the protection scheme. See [CENC] section 4.

Exactly one moov/trak/mdia/minf/stbl/stsd/sinf/schi/tenc "Track Encryption" box ([CENC]
8.2) which contains default encryption parameters for samples. These default
parameters may be overridden in media segments (see below).

Exactly one moof/traf/senc "Sample Encryption" box ([CENC] 7.2) which stores
initialization vectors (IVs) and, optionally, subsample encryption ranges for samples in
the same CMAF fragment.

Zero or one moof/traf/saiz "Sample Auxiliary Information Size" boxes ([ISOBMFF] 8.7.8)
which references the sizes of the per-sample data stored in the moof/traf/senc box
([CMAF] 8.2.2 and [CENC] section 7).

Omitted if the parameters provided by the senc box are identical for all samples in
the CMAF fragment.

Zero or one moof/traf/saio "Sample Auxiliary Information Offset" boxes ([ISOBMFF] 8.7.9)
which references the sizes of the per-sample data stored in the moof/traf/senc box
([CMAF] 8.2.2 and [CENC] section 7).

Omitted if the parameters provided by the senc box are identical for all samples in
the CMAF fragment.

Zero or more moof/pssh "Protection System Specific Header" boxes ([CENC] 8.1) which
provide transparent updates to DRM system internal state. See § 9.4 Delivering updates
to DRM system internal state.

For each sample group, exactly one moof/traf/sgpd "Sample Group Description" box
([ISOBMFF] 8.9.3 and [CENC] section 6) which contains overrides for encryption
parameters defined in the tenc box.

Omitted if no parameters are overridden.

For each sample grouping type (see [ISOBMFF], typically one), exactly one moof/traf/sbgp
"Sample to Group" box ([ISOBMFF] 8.9.2 and [CENC] section 6) which associates
samples with sample groups.

Omitted if no parameters are overridden.

A key hierarchy is implemented by listing the default_KID in the tenc box of the initialization
segment (identifying the root key) and then overriding the key identifier in the sgpd boxes of
media segments (identifying the leaf keys that apply to each media segment). The moof/pssh
box is used to deliver/unlock new leaf keys and may provide the associated license policy.

When using CMAF chunks for delivery, each CMAF fragment may be split into multiple CMAF
chunks. If the CMAF fragment contained any moof/pssh boxes, copies of these boxes SHALL
be present in each CMAF chunk that starts with an independent media sample.

A DASH client needs to recognize encrypted content and activate a suitable DRM system,
configuring it to decrypt content. The MPD informs a DASH client of the protection scheme
used to protect content, identifies the content keys that are used and optionally provides
the default DRM system configuration for a set of DRM systems.

The DRM system configuration is the complete data set required for a DASH client to
activate a single DRM system and configure it to decrypt content using a single content key.
It is supplied by a combination of XML elements in the MPD and/or solution-specific
logic and configuration. The DRM system configuration often contains:

The exact set of values required for successful DRM workflow execution depends on the
requirements of the selected DRM system (e.g. what kind of initialization data it can accept)
and the mechanism used for content key acquisition (e.g. the DASH-IF interoperable license
request model). By default, a DASH client SHOULD assume that a DRM system accepts

NOTE: While DASH only requires the presence of moof/pssh in the first CMAF chunk,
the requirement is more extensive in the interest of HLS interoperability
[HLS-LowLatency].

9. Encryption and DRM signaling in the MPD§

DRM system initialization data in the form of a DRM system specific pssh box (as
defined in [CENC]).

DRM system initialization data in some other DRM system specific form (e.g. keyids
JSON structure used by W3C Clear Key)

The used protection scheme (cenc or cbcs)

default_KID that identifies the content key

License server URL

Authorization service URL

initialization data in pssh format and that the DASH-IF interoperable license request model
is used for content key acquisition.

When configuring a DRM system to decrypt content using multiple content keys, a distinct
DRM system configuration is associated with each content key. Concurrent use of multiple
DRM systems is not an interoperable scenario.

The DRM system configuration MAY change over time, both due to MPD updates in live
services and due to runtime changes in the solution-specific logic and configuration. A
typical example of runtime changse would be using a unique license server URL for each
license request.

The presence of a ContentProtection descriptor with
schemeIdUri="urn:mpeg:dash:mp4protection:2011" on an adaptation set informs a DASH client
that all representations in the adaptation set are encrypted in conformance to Common
Encryption ([DASH] sections 5.8.4.1 and 5.8.5.2 and [CENC] section 11) and require a DRM
system to provide access.

This descriptor is present for all encrypted content ([DASH] section 5.8.4.1). It SHALL be
defined on the adaptation set level. The value attribute indicates the used protection
scheme ([DASH] section 5.8.5.2). The cenc:default_KID attribute SHALL be present and have a
value matching the default_KID in the tenc box.

NOTE: In theory, it is possible for the DRM system initialization data to be the same for
different content keys. In practice, the default_KID is often included in the initialization
data so this is unlikely. Nevertheless, DASH clients cannot assume that using equal
initialization data implies anything about equality of the DRM system configuration or the
content key - the default_KID is the factor identifying the scope in which a single content
key is to be used. See § 9.2 default_KID defines the scope of DRM system interactions.

9.1. Signaling presence of encrypted content§

The tenc box stores default_KID as a 16-byte array. The byte order SHALL be identical in the
binary structure and the string-form default_KID .

Some Windows-targeting software libraries implement "Microsoft style" UUID
serialization that changes the order of bytes when transforming between string

form and binary form. This is not appropriate when serializing/deserializing
default_KID values. Linux-based tooling typically does not change the byte order.

A DASH client interacts with one or more DRM systems during playback in order to control
the decryption of content. Some of the most important interactions are:

The scope of each of these interactions is defined by the default_KID . Each distinct
default_KID identifies exactly one content key. The impact of this is further outlined in § 11
DRM workflows in DASH clients.

EXAMPLE 5
Signaling an adaptation set encrypted using the cbcs scheme and with a content key
identified by 34e5db32-8625-47cd-ba06-68fca0655a72 .

<ContentProtection
 schemeIdUri="urn:mpeg:dash:mp4protection:2011"
 value="cbcs"
 cenc:default_KID="34e5db32-8625-47cd-ba06-68fca0655a72" />

¶

EXAMPLE 6
The following are two equivalent forms of representing the same default_KID :

¶

In string form: 00010203-0405-0607-0809-0a0b0c0d0e0f

In binary form: 0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0x07 , 0x08 , 0x09 , 0x0a ,
0x0b , 0x0c , 0x0d , 0x0e , 0x0f

9.2. default_KID defines the scope of DRM system interactions§

Activating a DRM system to play back content protected with a specific set of content
keys.

Communicating with the DRM system to make content keys available for use, executing
license requests as needed.

When activating a DRM system, a DASH client SHALL determine the required set of content
keys based on the default_KID values of adaptation sets selected for playback. This set of
content keys is used to activate the DRM system, after which zero or more of the content
keys from this set are available for playback.

Clients SHALL provide all default_KIDs of the selected adaptation sets to the DRM system
during activation and SHALL NOT assume that activating a DRM system with one content
key will implicitly enable the use of any other content key.

The DASH client and/or DRM system MAY batch license requests for different default_KIDs
(and the respective responses) into a single transaction (for example, to reduce the
chattiness of license acquisition traffic).

While it is common that default_KID identifies the actual content key used for encryption, a
DRM system MAY make use of other keys in addition to the one signalled by the default_KID
value but this SHALL be transparent to the client with only the default_KID being used in
interactions between the DASH client and the DRM system. See § 13 Controlling access
rights with a key hierarchy.

NOTE: An occasionally encountered anti-pattern is to activate a DRM system for only
key X but to configure the license server to always provide both keys X and Y when key X
is requested. This is not inteoperable behavior.

NOTE: This optimization might require support from platform APIs and/or DRM system
specific logic from the DASH client, as a batching mechanism is not yet a standard part of
DRM related platform APIs.

9.2.1. default_KID in hierarchical/derived/variant key scenarios§

Figure 3 In a hierarchical key scenario, default_KID references the root key and only the sample group
descriptions reference the leaf keys.

In a hierarchical key scenario, default_KID identifies the root key, not the leaf key used to
encrypt media samples, and the handling of leaf keys is not exposed to a DASH client. As far
as a DASH client knows, there is always only one content key identified by default_KID .

This logic applies to all scenarios that make use of additional keys, regardless of whether
they are based on the key hierarchy, key derivation or variant key ([iso23001-12]) concepts.

A DASH service SHOULD supply a default DRM system configuration in the MPD for all
supported DRM systems in all encrypted adaptation sets. This enables playback without the
need for DASH client customization or additional client-side configuration. DRM system
configuration MAY also be supplied by solution-specific logic and configuration, replacing or
enhancing the defaults provided in the MPD.

Any number of ContentProtection descriptors ([DASH] section 5.8.4.1) MAY be present in the
MPD to provide DRM system configuration. These descriptors SHALL be defined on the
adaptation set level. The contents MAY be ignored by the DASH client if overridden by
solution-specific logic and configuration - the DRM system configuration in the MPD simply
provides default values known at content authoring time.

A ContentProtection descriptor providing a default DRM system configuration SHALL use
schemeIdUri="urn:uuid:<systemid>" to identify the DRM system, with the <systemid> matching

9.3. Providing default DRM system configuration§

a value in the DASH-IF system-specific identifier registry. The value attribute of the
ContentProtection descriptor SHOULD contain the DRM system name and version number in
a human readable form (for diagnostic purposes).

Each DRM system specific ContentProtection descriptor can contain a mix of XML elements
and attributes defined by [CENC], the DRM system author, DASH-IF or any other party.

For DRM systems initialized by supplying pssh boxes, the cenc:pssh element SHOULD be
present under the ContentProtection descriptor if the value is known at MPD authoring time.
The base64 encoded contents of the element shall be equivalent to a complete pssh box
including its length and header fields ([CENC] section 11.3.3). See also § 8 Content protection
constraints for CMAF.

DRM systems generally use the concept of license requests as the mechanism for obtaining
content keys and associated usage constraints (see § 11.7 Performing license requests). For
DRM systems that use this concept, one or more dashif:laurl elements SHOULD be present
under the ContentProtection descriptor, with the value of the element being the URL to send
license requests to. This URL MAY contain content identifiers.

Multiple mechanisms have historically been used to provide the license server URL in the
MPD (e.g. embedding in the cenc:pssh data or passing by deprecated DRM system specific
DASH-IF Laurl elements). A DASH client SHALL prefer dashif:laurl if multiple data sources for
the URL are present in the MPD.

For DRM systems that require proof of authorization to be attached to the license request in
a manner conforming to § 10 DASH-IF interoperable license request model, one or more
dashif:authzurl elements SHOULD be present under the ContentProtection descriptor,
containing the default URL to send authorization requests to (see § 11.7 Performing license
requests).

Multiple dashif:laurl or dashif:authzurl elements under the same ContentProtection descriptor
define sets of equivalent alternatives for the DASH client to choose from. A DASH client
SHOULD select a random item from the set every time the value of such an element is used.

NOTE: W3C defines the Clear Key mechanism ([encrypted-media] section 9.1), which is
a "dummy" DRM system implementation intended for client and platform
development/testing purposes. Understand that Clear Key does not fulfill the
content protection and content key protection duties ordinarily expected from a
DRM system. For more guidelines on Clear Key usage, see § 14 Use of W3C Clear Key
with DASH.

https://dashif.org/identifiers/content_protection/

The presence of a DRM system specific ContentProtection descriptor is not required in order
to activate the DRM system; these descriptors are used merely to provide the default DRM
system configuration. Empty ContentProtection descriptors SHOULD NOT be present in an
MPD and MAY be ignored by DASH clients.

Because default_KID determines the scope of DRM system interactions, the contents of DRM
system specific ContentProtection descriptors with the same schemeIdUri SHALL be identical
in all adaptation sets with the same default_KID . This means that a DRM system will treat
equally all adaptation sets that use the same content key.

To maintain the default_KID association, a DASH client that exposes APIs/callbacks to
business logic for the purpose of controlling DRM interactions and/or supplying data for
DRM system configuration SHALL NOT allow these APIs to associate multiple DRM system
configurations for the same DRM system with the same default_KID . Conversely, DASH client
APIs SHOULD allow business logic to provide different DRM system configurations for the
same DRM system for use with different default_KIDs .

ISSUE 1 The above paragraph on URL handling should be generalized to all sets of
alternative URLs but there does not seem to be a suitable chapter in v4.3 If such a
chapter is created in v5, we could replace the above paragraph with a reference to the
general URL handling guidelines.

¶

EXAMPLE 7
A ContentProtection descriptor that provides default DRM system configuration for a
fictional DRM system.

<ContentProtection
 schemeIdUri="urn:uuid:d0ee2730-09b5-459f-8452-200e52b37567"
 value="FirstDRM 2.0">
 <cenc:pssh>YmFzZTY0IGVuY29kZWQgY29udGVudHMgb2YgkXBzc2iSIGJveCB3aXRoIHRoaXMgU3l
 <dashif:authzurl>https://example.com/tenants/5341/authorize</dashif:authzurl>
 <dashif:laurl>https://example.com/AcquireLicense</dashif:laurl>
</ContentProtection>

¶

NOTE: If you wish to change the default DRM system configuration associated with a
content key, you must update all the instances where the data is present in the MPD. For
live services, this can mean updating the data in multiple periods.

Some DRM systems support live updates to DRM system internal state (e.g. to deliver new
leaf keys in a key hierarchy). These updates SHALL NOT be present in the MPD and SHALL
be delivered by moof/pssh boxes in media segments.

The interactions involved in acquiring licenses and content keys in DRM workflows have
historically been proprietary, requiring a DASH client to be customized in order to achieve
compatibility with specific DRM systems or license server implementations. This chapter
defines an interoperable model to encourage the creation of solutions that do not require
custom code in the DASH client in order to play back encrypted content. Use of this model is
optional but recommended.

Any conformance statements in this chapter apply to clients and services that opt in to
using this model (e.g. a "SHALL" statement means "SHALL, if using this model," and has no
effect on implementations that choose to use proprietary mechanisms for license
acquisition). The authorization service and license server are considered part of the DASH
service.

In performing license acquisition, a DASH client needs to:

This license request model defines a mechanism for achieving both goals. This results in the
following interoperability benefits:

These benefits increase in value with the size of the solution, as they reduce the
development cost required to offer playback of encrypted content on a wide range of DRM-
capable client platforms using different DRM systems, with licenses potentially served by
different license server implementations.

9.4. Delivering updates to DRM system internal state§

10. DASH-IF interoperable license request model§

1. Be able to prove that the user and device have the right to use the requested content
keys.

2. Handle errors in a manner agnostic to the specific DRM system and license server being
used.

DASH clients can execute DRM workflows without solution-specific logic and
configuration.

Custom code specific to a license server implementation is limited to backend business
logic.

An authorization token is a JSON Web Token used to prove to a license server that the caller
has the right to use one or more content keys under certain conditions. Attaching this proof
of authorization to a license request is optional, allowing for architectures where a "license
proxy" performs authorization checks in a manner transparent to the DASH client.

The basic structural requirements for authorization tokens are defined in [jwt] and [jws].
This document adds some additional constraints to ensure interoperability. Beyond that,
the license server implementation is what defines the contents of the authorization token
(the set of claims it contains), as the data needs to express implementation-specific license
server business logic parameters that cannot be generalized.

Implementations SHALL process claims listed in [jwt] section 4.1 "Registered Claim Names"
when they are present (e.g. exp "Expiration Time" and nbf "Not Before"). The typ header
parameter ([jwt] section 5.1) SHOULD NOT be present. The alg header parameter defined in
[jws] SHALL be present.

10.1. Proof of authorization§

NOTE: An authorization token is divided into a header and body. The distinction
between the two is effectively irrelevant and merely an artifact of the JWT specification.
License servers may use existing fields and define new fields in both the header and the
body.

Authorization tokens are issued by an authorization service, which is part of a solution’s
business logic. The authorization service has access to the project-specific context that it
needs to make its decisions (e.g. the active session, user identification and database of
purchases/entitlements). A single authorization service can be used to issue authorization
tokens for multiple license servers, simplifying architecture in solutions where multiple
license server vendors are used.

EXAMPLE 8
JWT headers, specifying digital signature algorithm and expiration time (general purpose
fields):

{
 "alg": "HS256",
 "exp": "1516239022"
}

JWT body with list of authorized content key IDs (an example field that could be defined
by a license server):

{
 "authorized_kids": [
 "1611f0c8-487c-44d4-9b19-82e5a6d55084",
 "db2dae97-6b41-4e99-8210-493503d5681b"
]
}

The above data sets are serialized and digitally signed to arrive at the final form of the
authorization token:
eyJhbGciOiJIUzI1NiIsImV4cCI6IjE1MTYyMzkwMjIifQ.eyJhdXRob3JpemVkX2tpZHMiOlsiMTYxMWYwYz

gtNDg3Yy00NGQ0LTliMTktODJlNWE2ZDU1MDg0IiwiZGIyZGFlOTctNmI0MS00ZTk5LTgyMTAtNDkzN

TAzZDU2ODFiIl19.tBvW6XVPHBRp1JEwItsVnbHwIqoqnQAVQfTV9PGMkIU

¶

Figure 4 Role of the authorization service in DRM workflow related communication.

An authorization service SHALL digitally sign any issued authorization token with an
algorithm from the "HMAC with SHA-2 Functions" or "Digital Signature with ECDSA" sets in
[jwt]. The HS256 algorithm is recommended as a highly compatible default, as it is a
required part of every JWT implementation. License server implementations SHALL validate
the digital signature and reject tokens with invalid signatures or tokens using signature
algorithms other than those referenced here. The license server MAY further constrain the
set of allowed signature algorithms.

Successful signature verification requires that keys/certificates be distributed and trust
relationships be established between the signing parties and the validating parties. The
specific mechanisms for this are implementation-specific and out of scope of this document.

To obtain an authorization token, a DASH client needs to know the URL of the authorization
service. DASH services SHOULD specify the authorization service URL in the MPD using the
dashif:authzurl element (see § 9.3 Providing default DRM system configuration).

If no authorization service URL is provided by the MPD nor made available at runtime, a
DASH client SHALL NOT attach an authorization token to a license request. Absence of this
URL implies that authorization operations are performed in a manner transparent to the
DASH client (see § 10.3 Possible deployment architectures).

10.1.1. Obtaining authorization tokens§

Figure 5 Authorization tokens are requested from all authorization services referenced by the selected
adaptation sets.

DASH clients will use zero or more authorization tokens depending on the number of
authorization service URLs defined for the set of content keys in use. One authorization
token is requested from each distinct authorization service URL. The authorization service
URL is specified individually for each DRM system and content key (i.e. it is part of the DRM
system configuration). Services SHOULD use a single authorization token covering all
content keys and DRM systems but MAY divide the scope of authorization tokens if
appropriate (e.g. different DRM systems might use different license server vendors that use
mutually incompatible authorization token formats).

DASH clients SHOULD cache and reuse authorization tokens up to the moment specified in
the token’s exp "Expiration Time" claim (defaulting to "never expires"). DASH clients SHALL
discard the authorization token and request a new one if the license server indicates that
the authorization token was rejected (for any reason), even if the "Expiration Time" claim is

NOTE: Path or query string parameters in the authorization service URL can be used to
differentiate between license server implementations (and their respective authorization
token formats).

not present or the expiration time is in the future (see § 10.2 Problem signaling and
handling).

Before requesting an authorization token, a DASH client SHALL take the authorization
service URL and add or replace the kids query string parameter containing a comma-
separated list in ascending alphanumeric order of default_KID values obtained from the
MPD. This list SHALL contain every default_KID for which proof of authorization is requested
from this authorization service (i.e. every distinct default_KID for which the same set of URLs
was specified using dashif:authzurl elements).

To request an authorization token, a DASH client SHALL make an HTTP GET request to this
modified URL, attaching to the request any standard contextual information used by the
underlying platform and allowed by active security policy (e.g. HTTP cookies). This data can
be used by the authorization service to identify the user and device and assess their access
rights.

If the HTTP response status code indicates a successful result and Content-Type: text/plain ,
the HTTP response body is the authorization token.

NOTE: For DASH clients operating on the web platform, effective use of the
authorization service may require the authorization service to exist on the same origin as
the website hosting the DASH client in order to share the session cookies.

If the HTTP response status code indicates a failure, a DASH client needs to examine the
response to determine the cause of the failure and handle it appropriately (see § 10.2
Problem signaling and handling). DASH clients SHOULD NOT treat every failed authorization
token request as a fatal error - if multiple authorization tokens are used to authorize access
to different content keys, it may be that some of them fail but others succeed, potentially
still enabling a successful playback experience. The examination of whether playback can
successfully proceed SHOULD be performed only once all license requests have been
completed and the final set of available content keys is known. See also § 11.4 Handling
unavailability of content keys.

DASH clients SHALL follow HTTP redirects signaled by the authorization service.

The mechanism of performing authorization checks is implementation-specific. Common
approaches might be to identify the user from a session cookie, query the
entitlements/purchases database to identify what rights are assigned to the user and then
assemble a suitable authorization token, taking into account the license policy configuration

EXAMPLE 9
Consider an MPD that specifies the authorization service URL
https://example.com/Authorize for the content keys with default_KID values 1611f0c8-487c-

44d4-9b19-82e5a6d55084 and db2dae97-6b41-4e99-8210-493503d5681b .

The generated URL would then be https://example.com/Authorize?kids=1611f0c8-487c-44d4-

9b19-82e5a6d55084,db2dae97-6b41-4e99-8210-493503d5681b to which a DASH client would
make a GET request:

GET /Authorize?kids=1611f0c8-487c-44d4-9b19-82e5a6d55084,db2dae97-6b41-4e99-8210-49350
Host: example.com

Assuming authorization checks pass, the authorization service would return the
authorization token in the HTTP response body:

HTTP/1.1 200 OK
Content-Type: text/plain

eyJhbGciOiJIUzI1NiIsImV4cCI6IjE1MTYyMzkwMjIifQ.eyJhdXRob3JpemVkX2tpZHMiOlsiMTYxMWYwY

¶

10.1.2. Issuing authorization tokens§

that applies to the content keys being requested. The DRM system may be involved in order
to ensure secure authentication of the device.

The structure of the authorization tokens is unconstrained beyond the basic requirements
defined in § 10.1 Proof of authorization. Authorization services need to issue tokens that
match the expectations of license servers that will be using these tokens. If multiple
different license server implementations are served by the same authorization service, the
path or query string parameters in the authorization service URL allow the service to
identify which output format to use.

An authorization service SHALL NOT issue authorization tokens that authorize the use of
content keys that are not in the set of requested content keys (as defined in the request’s
kids query string parameter). An authorization service MAY issue authorization tokens that
authorize the use of only a subset of the requested content keys, provided that at least one

EXAMPLE 10
Example authorization token matching the requirements of a hypothetical license server.

JWT headers, specifying digital signature algorithm and expiration time:

{
 "alg": "HS256",
 "exp": "1516239022"
}

JWT body with list of authorized content key IDs (an example field that could be defined
by a license server):

{
 "authorized_kids": [
 "1611f0c8-487c-44d4-9b19-82e5a6d55084",
 "db2dae97-6b41-4e99-8210-493503d5681b"
]
}

Serialized and digitally signed:
eyJhbGciOiJIUzI1NiIsImV4cCI6IjE1MTYyMzkwMjIifQ.eyJhdXRob3JpemVkX2tpZHMiOlsiMTYxMWYwYz

gtNDg3Yy00NGQ0LTliMTktODJlNWE2ZDU1MDg0IiwiZGIyZGFlOTctNmI0MS00ZTk5LTgyMTAtNDkzN

TAzZDU2ODFiIl19.tBvW6XVPHBRp1JEwItsVnbHwIqoqnQAVQfTV9PGMkIU

¶

content key is authorized. If no content keys are authorized for use, an authorization service
SHALL signal a failure.

Authorization tokens SHALL be returned by an authorization service using JWS Compact
Serialization [jws] (the aaa.bbb.ccc format). The serialized form of an authorization token
SHOULD NOT exceed 5000 characters to ensure that a license server does not reject a
license request carrying the token due to excessive HTTP header size.

Custom data fields on the authorization token MAY be encrypted to protect secrets within,
with the data format, encryption method and key management scheme defined by the
license server. These guidelines do not define any general recommendation for passing
encrypted data through authorization tokens.

NOTE: During license issuance, the license server may further constrain the set of
available content keys (e.g. as a result of examining the robustness level of the DRM
system implementation requesting the license). See § 11.4 Handling unavailability of
content keys.

10.1.3. Embedding secrets in authorization tokens§

NOTE: The JSON Web Token [jwt] data format used for authorization tokens is based
on JSON Web Signature [jws], which only supports signing without encryption. While
JSON Web Encryption [jwe] does define an encrypted data format, this is a completely
separate data format from JSON Web Token.

EXAMPLE 11
Example JWT body containing a secret (client IP address, encrypted for privacy):

{
 "authorized_kids": [
 "1611f0c8-487c-44d4-9b19-82e5a6d55084",
 "db2dae97-6b41-4e99-8210-493503d5681b"
],
 "client_ip_encrypted": "460e39f04d204c6233757feba31e8c1828019179dd651c55b14ab6c78e74
}

This example uses a custom data format for the encrypted data.

¶

Authorization tokens are attached to license requests using the Authorization HTTP request
header, signaling the Bearer authorization type.

The same authorization token MAY be used with multiple license requests but one license
request SHALL only carry one authorization token, even if the license request is for multiple
content keys. A DASH client SHALL NOT use content key batching features offered by the
platform APIs to combine requests for content keys that require the use of separate
authorization tokens.

A DASH client SHALL NOT make license requests for content keys that are configured as
requiring an authorization token but for which the DASH client has failed to acquire an
authorization token.

Authorization services and license servers SHOULD indicate an inability to satisfy a request
by returning an HTTP response that:

10.1.4. Attaching authorization tokens to license requests§

EXAMPLE 12
HTTP request to a hypothetical license server, carrying an authorization token.

POST /AcquireLicense HTTP/1.1
Authorization: Bearer eyJhbGciOiJIUzI1NiIsImV4cCI6IjE1MTYyMzkwMjIifQ.eyJhdXRob3JpemVkX2tpZ

(opaque license request blob from DRM system goes here)

¶

NOTE: A content key requires an authorization token if there is at least one
dashif:authzurl in the MPD or if this element is added by solution-specific logic and
configuration.

10.2. Problem signaling and handling§

1. Signals a suitable status code (4xx or 5xx).

2. Has a Content-Type of application/problem+json .

3. Contains a HTTP response body conforming to [rfc7807].

A problem record SHALL contain a short human-readable description of the problem in the
title field and SHOULD contain a human-readable description, designed to help the reader
solve the problem, in the detail field.

During DRM system activation, it is possible that multiple failures occur. DASH clients
SHOULD be capable of displaying a list of error messages to the end-user and SHOULD
deduplicate multiple records with the same type (e.g. if an authorization token expires, this
expiration may cause failures when requesting five content keys but should result in at most
one error message being displayed).

This chapter defines a set of standard problem types that SHOULD be used to indicate the
nature of the failure. Implementations MAY extend this set with further problem types if the
nature of the failure does not fit into the existing types.

EXAMPLE 13
HTTP response from an authorization service, indicating a rejected authorization token
request because the requested content is not a part of the user’s subscriptions.

HTTP/1.1 403 Forbidden
Content-Type: application/problem+json

{
 "type": "https://dashif.org/drm-problems/not-authorized",
 "title": "Not authorized",
 "detail": "Your active service plan does not include the channel 'EurasiaSport'.",
 "href": "https://example.com/view-available-subscriptions?channel=EurasiaSport",
 "hrefTitle": "Available subscriptions"
}

¶

NOTE: The detail field is intended to be displayed to users of a DASH client, not to
developers. The description should be helpful to the user whose device the DASH client
is running on.

NOTE: Merely the fact that a problem record was returned does not mean that it
needs to be presented to the user or acted upon in other ways. The user may still
experience successful playback in the presence of some failed requests. See § 11.4
Handling unavailability of content keys.

ISSUE 2 Let’s come up with a good set of useful problem types we can define here, to
reduce the set of problem types that must be defined in solution-specific scope.

¶

Type: https://dashif.org/drm-problems/not-authorized

Title: Not authorized

HTTP status code: 403

Used by: authorization service

This problem record SHOULD be returned by an authorization service if the user is not
authorized to access the requested content keys. The detail field SHOULD explain why this is
so (e.g. their subscription has expired, the requested content keys are for a movie not in
their list of purchases, the content is not available in their geographic region).

The authorization service MAY supply a href (string) field on the problem record, containing
a URL using which the user can correct the problem (e.g. purchase a missing subscription). If
the href field is present, a hrefTitle (string) field SHALL also be present, containing a title
suitable for a hyperlink or button (e.g. "Subscribe"). DASH clients MAY expose this URL and
title in their user interface to enable the user to find a quick solution to the problem.

Type: https://dashif.org/drm-problems/insufficient-proof-of-authorization

Title: Not authorized

HTTP status code: 403

Used by: license server

This problem record SHOULD be returned by a license server if the proof of authorization (if
any) attached to a license request is not sufficient to authorize the use of any of the
requested content keys. The detail field SHOULD explain what exactly was the expectation
the caller failed to satisfy (e.g. no token provided, token has expired, token is for disabled
tenant).

When encountering this problem, a DASH client SHOULD discard whatever authorization
token was used, acquire a new authorization token and retry the license request. If no

10.2.1. Problem type: not authorized to access content§

10.2.2. Problem type: insufficient proof of authorization§

NOTE: If the authorization token authorizes only a subset of requested keys, a license
server does not signal a problem and simply returns only the authorized subset of
content keys.

authorization service URL is available, this indicates a DASH service or client
misconfiguration (as clearly, an authorization token was expected) and the problem
SHOULD be escalated for operator attention.

The interoperable license request model is designed to allow for the use of different
deployment architectures in common use today, including those where authorization duties
are offloaded to a "license proxy". This chapter outlines some of the possible architectures
and how interoperable DASH clients support them.

The baseline architecture assumes that a separate authorization service exists,
implementing the logic required to determine which users have the rights to access which
content.

Figure 6 The baseline architecture with an authorization service directly exposed to the DASH client.

While the baseline architecture offers several advantages, in some cases it may be desirable
to have the authorization checks be transparent to the DASH client. This need may be
driven by license server implementation limitations or by other system architecture
decisions.

A common implementation for transparent authorization is to use a "license proxy", which
acts as a license server but instead forwards the license request after authorization checks
have passed. Alternatively, the license server itself may perform the authorization checks.

10.3. Possible deployment architectures§

Figure 7 A transparent authorization architecture performs the authorization checks at the license server,
which is often hidden behind a proxy (indistinguishable from a license server to the DASH client).

The two architectures can be mixed, with some DRM systems performing the authorization
operations in the license server (or a "license proxy") and others using the authorization
service directly. This may be relevant when integrating license servers from different
vendors into the same solution.

A DASH client will attempt to contact an authorization service if an authorization service URL
is provided either in the MPD or by solution-specific logic and configuration. If no such URL
is provided, it will assume that all authorization checks (if any are required) are performed
by the license server (in reality, often a license proxy) and will not attach any proof of
authorization.

The concept of a content ID is sometimes used to identify groups of content keys based on
solution-specific associations. The DRM workflows described by this document do not
require this concept to be used but do support it if the solution architecture demands it.

In order to make use of a content ID in DRM workflows, the content ID SHOULD be
embedded into authorization service URLs and/or license server URLs (depending on which
components are used and require the use of the content ID). This may be done either
directly at MPD authoring time (if the URLs and content ID are known at such time) or by
solution-specific logic and configuration at runtime.

Having embedded the content ID in the URL, all DRM workflows continue to operate the
same as they normally would, except now they also include knowledge of the content ID in

10.4. Passing a content ID to services§

each request to the authorization service and/or license server. The content ID is an
addition to the license request workflows and does not replace any existing data.

Embedding a content ID allows the service handling the request to use the
content ID in its business logic. However, the presence of a content ID in the URL
does not invalidate any requirements related to the processing of the default_KID
values of content keys. For example, an authorization service must still constrain

the set of authorized content keys to a subset of the keys listed in the kids
parameter (§ 10.1.2 Issuing authorization tokens).

No generic URL template for embedding the content ID is defined, as the content ID is
always a proprietary concept. Recommended options include:

The content ID SHOULD NOT be embedded in DRM system specific data structures such as
pssh boxes, as logic that depends on DRM system specific data structures is not
interoperable and often leads to increased development and maintenance costs.

To present encrypted content a DASH client needs to:

Query string parameters: https://example.com/tenants/5341/authorize?

contentId=movie865343651

Path segments: https://example.com/moviecatalog-license-

api/movie865343651/AcquireLicense

EXAMPLE 14
DRM system configuration with the content ID embedded in the authorization service
and license server URLs. Each service may use a different implementation-defined URL
structure for carrying the content ID.

<ContentProtection
 schemeIdUri="urn:uuid:d0ee2730-09b5-459f-8452-200e52b37567"
 value="AcmeDRM 2.0">
 <cenc:pssh>YmFzZTY0IGVuY29kZWQgY29udGVudHMgb2YgkXBzc2iSIGJveCB3aXRoIHRoaXMgU3l
 <dashif:authzurl>https://example.com/tenants/5341/authorize?contentId=movie865343651</da
 <dashif:laurl>https://example.com/moviecatalog-license-api/movie865343651/AcquireLicense</
</ContentProtection>

¶

11. DRM workflows in DASH clients§

This chapter defines the recommended DASH client workflows for interacting with DRM
systems in these aspects.

A DRM system implemented by a client platform may only support playback of encrypted
content that matches certain parameters (e.g. codec type and level). A DASH client needs to
detect what capabilities each DRM system has in order to understand what adaptation sets
can be presented and to make an informed choice when multiple DRM systems can be
used.

A typical media platform API such as EME [encrypted-media] will require the DASH client to
query the platform by supplying a desired capability set. The media platform will inspect the
desired capabilities, possibly displaying a permissions prompt to the user (if sensitive

1. Select a DRM system that is capable of decrypting the content.

During selection, the set of desired DRM system capabilities and the supported
capabilities is examined to identify suitable candidate systems.

2. Activate the selected DRM system and configure it to decrypt content.

During activation, acquire any missing content keys and the licenses that govern
their use.

3. Monitor for changes in the availability of content keys and in the content protection
attributes of the media stream and take required action to ensure that playback can
continue (e.g. live services may periodically change the content keys, requiring new
licenses to be obtained, or existing licenses can simply expire and need renewal).

11.1. Capability detection§

EXAMPLE 15
A typical DRM system might offer the following set of capabilities:

¶

Playback of H.264 High profile up to level 4.0 at "low" robustness

Playback of H.264 High profile level 4.1 at "low" robustness

Playback of H.265 Main 10 profile up to level 5.2 at "low" robustness

Playback of AAC at "low" robustness

Unique user identification

Session persistence

capabilities such as unique user identification are requested), after which it will return a
supported capability set that indicates which of the desired capabilities are available.

Figure 8 The DASH client presents a set of desired capabilities for each DRM system and receives a response
with the supported subset.

The exact set of capabilities that can be used and the data format used to express them in
capability detection APIs are defined by the media platform API. A DASH client is expected to
have a full understanding of the potentially offered capabilities and how they map to
parameters in the MPD. Some capabilities may have no relation to the MPD and whether
they are required depends entirely on the DASH client or solution-specific logic and
configuration.

To detect the set of supported capabilities, a DASH client must first determine the required
capability set for each adaptation set. This is the set of capabilities required to present all
the content in a single adaptation set and can be determined based on the following:

Querying for the support of different protection schemes is currently not possible
via the capability detection API of Encrypted Media Extensions [encrypted-media].

To determine the supported protection schemes, a DASH client must assume
what the CDM supports. A bug is open on W3C EME and a pull request exists for

the ISOBMFF file format bytestream. In future versions of EME, this may become
possible.

Some of the capabilities (e.g. required robustness level) are DRM system specific. The
required capability set contains the values for all DRM systems.

During DRM system selection, the required capability set of each adaptation set is
compared with the supported capability set of a DRM system. As a result of this, each

1. Content characteristics defined in the MPD (e.g. codecs strings of the representations
and the used protection scheme).

2. Solution-specific logic and configuration (e.g. what robustness level is required).

https://github.com/w3c/encrypted-media/pull/392

candidate DRM system is associated with zero or more adaptation sets that can be
successfully presented using that DRM system.

It is possible that multiple DRM systems have the capabilities required to present some or
all of the adaptation sets. When multiple candidates exist, the DASH client SHOULD enable
solution-specific logic and configuration to make the final decision.

The workflows defined in this document contain the necessary extension points to allow
DASH clients to exhibit sensible default behavior and enable solution-specific logic and
configuration to drive the choices in an optimal direction.

The MPD describes the protection scheme used to encrypt content, with the default_KID
values identifying the content keys required for playback, and optionally provides the
default DRM system configuration for one or more DRM systems via ContentProtection
descriptors. It also identifies the codecs used by each representation, enabling a DASH client
to determine the set of required DRM system capabilities.

Neither an initialization segment nor a media segment is required to select a DRM system.
The MPD is the only component of the presentation used for DRM system selection.

NOTE: Some sensible default behavior can be implemented in a generic way (e.g. the
DRM system should be able to enable playback of both audio and video if both media
types are present in the MPD). Still, there exist scenarios where the choices seem
equivalent to the DASH client and an arbitrary choice needs to be made.

11.2. Selecting the DRM system§

EXAMPLE 16
An adaptation set encrypted with a key identified by 34e5db32-8625-47cd-ba06-

68fca0655a72 using the cenc protection scheme.

<AdaptationSet>
 <ContentProtection
 schemeIdUri="urn:mpeg:dash:mp4protection:2011"
 value="cenc"
 cenc:default_KID="34e5db32-8625-47cd-ba06-68fca0655a72" />
 <ContentProtection
 schemeIdUri="urn:uuid:d0ee2730-09b5-459f-8452-200e52b37567"
 value="FirstDrm 2.0">
 <cenc:pssh>YmFzZTY0IGVuY29kZWQgY29udGVudHMgb2YgkXBzc2iSIGJveCB3aXRoIHRoaXMg
 <dashif:authzurl>https://example.com/tenants/5341/authorize?mode=firstDRM</dashif:auth
 <dashif:authzurl>https://alternative.example.com/tenants/5341/authorize?mode=firstDRM</
 <dashif:laurl>https://example.com/AcquireLicense</dashif:laurl>
 <dashif:laurl>https://alternative.example.com/AcquireLicense</dashif:laurl>
 </ContentProtection>
 <ContentProtection
 schemeIdUri="urn:uuid:eb3841cf-d7e4-4ec4-a3c5-a8b7f9f4f55b"
 value="SecondDrm 8.0">
 <cenc:pssh>ZXQgb2YgcGxheWFibGUgYWRhcHRhdGlvbiBzZXRzIG1heSBjaGFuZ2Ugb3ZlciB0aW
 <dashif:authzurl>https://example.com/tenants/5341/authorize?mode=secondDRM</dashif:a
 </ContentProtection>
 <Representation mimeType="video/mp4" codecs="avc1.64001f" width="640" height="360" />
 <Representation mimeType="video/mp4" codecs="avc1.640028" width="852" height="480" />
</AdaptationSet>

The MPD provides DRM system configuration for DRM systems:

There are two encrypted representations in the adaptation set, each with a different
codecs string. Both codecs strings are included in the required capability set of this
adaptation set. A DRM system must support playback of both representations in order to
present this adaptation set.

¶

For FirstDRM , the MPD provides complete DRM system configuration, including the
optional dashif:authzurl . Two equivalent alternative URLs are provided for accessing
the associated services.

For SecondDRM , the MPD does not provide the license server URL. It must be
supplied at runtime.

In addition to the MPD, a DASH client can use solution-specific logic and configuration for
controlling DRM selection and configuration decisions (e.g. loading license server URLs from
configuration data instead of the MPD). This is often implemented in the form of callbacks
exposed by the DASH client to an "app" layer in which the client is hosted. It is assumed that
when executing any such callbacks, a DASH client makes available relevant contextual data,
allowing the business logic to make fully informed decisions.

The purpose of the DRM system selection workflow is to select a single DRM system that is
capable of decrypting a meaningful subset of the adaptation sets selected for playback. The
selected DRM system will meet the following criteria:

It may be that the selected DRM system is only able to decrypt a subset of the encrypted
adaptation sets selected for playback. See also § 11.4 Handling unavailability of content
keys.

The set of adaptation sets considered during selection does not need to be constrained to a
single period, potentially enabling seamless transitions to a new period with a different set
of content keys.

In live services new periods may be added over time, with potentially different DRM system
configuration and required capability sets, making it necessary to re-execute the selection
process.

The default DRM system configuration in the MPD of a live service can change over time.
DASH clients are not expected to re-execute DRM workflows if the default DRM system
configuration in the MPD changes for an adaptation set that has already been processed in
the past. Such changes will only affect clients that are starting playback.

When encrypted adaptation sets are initially selected for playback or when the selected set
of encrypted adaptation sets changes (e.g. because a new period was added to a live
service), a DASH client SHOULD execute the following algorithm for DRM system selection:

1. It is actually implemented by the media platform.

2. It supports a set of capabilities sufficient to present an acceptable set of adaptation
sets.

3. The necessary DRM system configuration for this DRM system is available.

NOTE: If a new period has significantly different requirements in terms of DRM system
configuration or the required capability sets, the media pipeline may need to be re-
initialized to play the new period. This may result in a glitch/pause at the period
boundary. The specifics are implementation-dependant.

1. Let adaptation_sets be the set of encrypted adaptation sets selected for playback.

2. Let signaled_system_ids be the set of DRM system IDs for which a ContentProtection
descriptor is present in the MPD on any entries in adaptation_sets.

3. Let candidate_system_ids be an ordered list initialized with items of signaled_system_ids in
any order.

4. Provide candidate_system_ids to solution-specific logic and configuration for
inspection/modification.

This enables business logic to establish an order of preference where multiple DRM
systems are present.

This enables business logic to filter out DRM systems known to be unsuitable.

This enables business logic to include DRM systems not signaled in the MPD.

5. Let default_kids be the set of all distinct default_KID values in adaptation_sets.

6. Let system_configurations be an empty map of system ID -> map(default_kid ->

configuration) , representing the DRM system configuration of each default_KID for each
DRM system.

7. For each system_id in candidate_system_ids:

1. Let configurations be a map of default_kid -> configuration where the keys are
default_kids and the values are the DRM system configurations initialized with data
from ContentProtection descriptors in the MPD (matching on default_KID and
system_id).

If there is no matching ContentProtection descriptors in the MPD, the map still
contains a partially initialized DRM system configuration for the default_KID .

Enhance the MPD-provided default DRM system configuration with
synthesized data where appropriate (e.g. to generate W3C Clear Key
initialization data in a format supported by the platform API).

2. Provide configurations to solution-specific logic and configuration for inspection
and modification, passing system_id along as contextual information.

This enables business logic to override the default DRM system configuration
provided by the MPD.

This enables business logic to inject values that were not embedded in the
MPD.

This enables business logic to reject content keys that it knows cannot be
used, by removing the DRM system configuration for them.

3. Remove any entries from configurations that do not contain all of the following
pieces of data:

License server URL

DRM system initialization data in a format accepted by the particular DRM
system; this is generally a pssh box [CENC], though some DRM systems also
support other formats

4. Add configurations to system_configurations (keyed on system_id).

8. Remove from candidate_system_ids any entries for which the map of DRM system
configurations in system_configurations is empty.

9. Let required_capability_sets be a map of adaptation set -> capability set , providing the
required capability set of every item in adaptation_sets.

10. Match the capabilities of DRM systems with the required capability sets of adaptation
sets:

1. Let supported_adaptation_sets be an empty map of system ID -> list of adaptation set ,
incidating which adaptation sets are supported by which DRM systems.

2. For each system_id in candidate_system_ids:

1. Let candidate_adaptation_sets by the set of adaptation sets for which
system_configurations contains DRM system configuration (keyed on system_id
and then the default_KID of the adaptation set).

This excludes from further consideration any adaptation sets that could
not be used due to lacking DRM system configuration, even if capabilities
match.

2. Let maximum_capability_set be the union of all values in
required_capability_sets keyed on items of candidate_adaptation_sets.

3. Query the DRM system identified by system_id with the capability set
maximum_capability_set, assigning the output to supported_capability_set.

A DRM system that is not implemented is treated as having no
capabilities.

4. For each adaptation_set in candidate_adaptation_sets:

1. If supported_capability_set contains all the capabilities in the
corresponding entry in required_capability_sets (keyed on
adaptation_set), add adaptation_set to the list in
supported_adaptation_sets (keyed on system_id).

11. Remove from supported_adaptation_sets any entries for which the value (the set of
adaptation sets) meets any of the following criteria:

The set is empty (the DRM system does not support playback of any adaptation
set).

The set does not contain all encrypted media types present in the MPD (e.g. the
DRM system can decrypt only the audio content but not the video content).

12. If supported_adaptation_sets is empty, playback of encrypted content is not possible and
the workflow ends.

13. If supported_adaptation_sets contains multiple items, request solution-specific logic and
configuration to select the preferred DRM system from among them.

This allows solution-specific logic and configuration to make an informed choice
when different DRM systems can play different adaptation sets. Contrast this to the
initial order of preference that was defined near the start of the algorithm, which
does not consider capabilities.

14. If solution-specific logic and configuration does not make a decision, find the first entry
in candidate_system_ids that is among the keys of supported_adaptation_sets. Remove
items with any other key from supported_adaptation_sets.

This falls back to the "order of preference" logic and takes care of scenarios where
business logic did not make an explicit choice.

15. Let selected_system_id be the single remaining key in supported_adaptation_sets.

16. Let final_adaptation_sets be the single remaining value in supported_adaptation_sets.

17. Let final_configurations (map of default_KID -> DRM system configuration) be the value from
system_configurations keyed on selected_system_id.

18. Remove from final_configurations any entries keyed on default_KID values that are not
used by any adaptation set in final_adaptation_sets.

If a DRM system is successfully selected, activation and potentially one or more license
requests will follow before playback can proceed. These related workflows are described in
the next chapters.

Once a suitable DRM system has been selected, it must be activated by providing it a list of
content keys that the DASH client requests to be made available for content decryption,
together DRM system specific initialization data for each of the content keys. The result of
activation is a DRM system that is ready to decrypt zero or more encrypted adaptation sets
selected for playback.

During activation, it may be necessary to perform license requests in order to obtain some
or all of the content keys and the usage policy that constrains their use. Some of the
requested content keys may already be available to the DRM system, in which case no
license request will be triggered.

Once a suitable DRM system has been selected, a DASH client SHOULD execute the
following algorithm to activate it:

These are the configurations of adaptation sets for which configuration was
present but for which the required capabilities were not offered by the DRM
system.

19. Prohibit playback of any encrypted adaptation sets that are not in final_adaptation_sets.

These are existing adaptation sets for which either no DRM system configuration
exists or for which the required capabilities are not provided by the selected DRM
system.

20. Execute the DRM system activation workflow, providing selected_system_id and
final_configurations as inputs.

11.3. Activating the DRM system§

NOTE: The details of stored content key management and persistent DRM session
management are out of scope of this document - workflows described here simply
accept the fact that some content keys may already be available, regardless of why that
is the case or what operations are required to establish content key persistence.

1. Let configurations be the input to the algorithm; it is a map with the entry keys being
default_KID values identifying the content keys and the entry values being the DRM
system configuration to use with that particular content key.

The default format for initialization data supplied to a DRM system is a pssh box. However, if
the DASH client has knowledge of any special initialization requirements of a particular DRM
system, it MAY supply initialization data in other formats (e.g. the keyids JSON structure used
by W3C Clear Key). Presence of initialization data in the expected format is considered
during DRM system selection when determining whether a DRM system is a valid candidate.

For historical reasons, platform APIs often implement DRM system activation as a per-
content-key operation. Some APIs and DRM system implementations may also support
batching all the content keys into a single activation operation, for example by combining
multiple "content key and DRM system configuration" data sets into a single data set in a
single API call. DASH clients MAY make use of such batching where supported by the
platform API. The workflow in this chapter describes the most basic scenario where
activation must be performed separately for each content key.

2. Let pending_license_requests be an empty set.

3. For each kid and config pair in configurations invoke the platform API to activate the
selected DRM system and signal it to make kid available for decryption, passing the
DRM system the initialization data stored in config.

If the DRM system indicates that one or more license requests are needed, add any
license request data provided by the DRM system and/or platform API to
pending_license_requests, together with the associated kid and config values.

4. If pending_license_requests is not an empty set, execute the license request workflow and
provide this set as input to the algorithm.

5. Inspect the set of content keys the DRM system indicates are now available and
deselect from playback any adaptation sets for which the content key has not become
available.

6. Inspect the set of remaining adaptation sets to determine if a sufficient data set
remains for successful playback. Raise error if playback cannot continue.

NOTE: The batching may, for example, be accomplished by concatenating all the pssh
boxes for the different content keys. Support for this type of batching among DRM
systems and platform APIs remains uncommon, despite the potential efficiency gains
from reducing the number of license requests triggered.

It is possible that not all of the encrypted adaptation sets selected for playback can actually
be played back (e.g. because a content key for ultra-HD content is only authorized for use by
implementations with a high robustness level). The unavailability of one or more content
keys SHOULD NOT be considered a fatal error condition as long as at least one audio and at
least one video adaptation set remains available for playback (assuming both content types
are initially selected for playback). This logic MAY be overridden by solution specific business
logic to better reflect end-user expectations.

A DASH client can request a DRM system to enable decryption using any set of content keys
(if it has the necessary DRM system configuration). However, this is only a request and
playback can be countermanded at multiple stages of processing by different involved
entities.

11.4. Handling unavailability of content keys§

Figure 9 The set of content keys made available for use can be far smaller than the set requested by a DASH
client. Example workflow indicating potential instances of content keys being removed from scope.

The set of available content keys is only known at the end of executing the activation
workflow and may decrease over time (e.g. due to license expiration). The proper handling
of unavailable keys depends on the limitations imposed by the platform APIs.

Media platform APIs often refuse to start or continue playback if the DRM system
is not able to decrypt all the data already in media platform buffers.

It may be appropriate for a DASH client to avoid buffering data for encrypted adaptation
sets until the required content key is known to be available. This allows the client to avoid

potentially expensive buffer resets and rebuffering if unusable data needs to be removed
from buffers.

The set of available content keys can change over time (e.g. due to license expiration or due
to new periods in the presentation requiring different content keys).

If a content key expires during playback it is common for a media platform to pause
playback until the content key can be refreshed with a new license or until data encrypted
with the now-unusable content key is removed from buffers. DASH clients SHOULD acquire
new licenses in advance of license expiration and SHOULD implement appropriate
recovery/fallback behavior to ensure a minimally disrupted user experience in situations
where some content keys remain available even after attempted license renewal.

A DASH client SHALL monitor the set of default_KID values that are required for playback and
either request the DRM system to make these content keys available or deselect the
affected adaptation sets when the content keys become unavailable. Conceptually, any such
change can be handled by re-executing the DRM system selection and activation workflows,
although platform APIs may also offer more fine-grained update capabilities.

A DASH client MAY enable solution-specific logic and configuration to disable proactive
license acquisition, for example to enable scenarios where solution-specific logic and
configuration explicitly triggers license requests at desired times and with desired
parameters.

NOTE: The DASH client should still download the data into intermediate buffers for
faster startup and simply defer submitting it to the media platform API until key
availability is confirmed.

11.5. Handling changes in required and available content keys§

NOTE: Some CDM implementations emit license renewal signals using the EME license-

renewal [encrypted-media] message. CDMs are not obligated to implement this
mechanism and DASH clients cannot rely on this message as the only source of
expiration information. In particular, the MediaKeySession.expiration property needs to be
monitored to stay informed of upcoming license expiration.

When content keys are acquired, the license that delivers them also supplies a policy for the
DRM system, instructing it how to protect the content that is made accessible by the content
keys.

Typical DRM systems will enforce the most restrictive protection policy from among
all active content keys and will refuse to start playback if any of the constraints
cannot be satisfied! As a result, it can be the case that even though only the constraints for
a UHD video stream cannot be satisfied, playback of even the lower quality levels is blocked.

In many cases, it might be more desirable to instead exclude the UHD quality level from the
set of adaptation sets selected for playback and DRM system activation. Alternatively, there
may be a different DRM system implementation available on the device that is capable of
satisfying the constraints. It is not possible for a DASH client to resolve these constraints as
it has no knowledge of what policy applies nor of the capabilities of the different DRM
system implementations.

Solution-specific logic and configuration SHOULD be used to select the most suitable DRM
system, taking into consideration the protection policy, and to preemptively exclude
adaptation sets from playback if it can be foreseen that the protection policy for their
content keys cannot be satisfied. Likewise, license servers SHOULD NOT provide content
keys if it can be foreseen that the recipient will be unable to satisfy their protection policy.

DASH clients performing license requests SHOULD follow the DASH-IF interoperable license
request model. The remainder of this chapter only applies to DASH clients that follow this
model. Alternative implementations are possible and in common use but are not
interoperable and are not described in this document.

11.6. Content protection policies§

EXAMPLE 17

Protection policy may define the following example requirements:

¶

All connected displays must support HDCP 2.2 or newer.

The video display area must be no more than 1280x720 pixels.

Minimum DRM system robustness level is "800".

11.7. Performing license requests§

DRM systems generally do not perform license requests on their own. Rather, when they
determine that a license is required, they generate a document that serves as the license
request body and expect the DASH client to deliver it to a license server for processing. The
latter returns a suitable response that, if a license is granted, encapsulates the content keys
in an encrypted form only readable to the DRM system.

Figure 10 Simplified conceptual model of license request processing. Many details omitted.

The request and response body are in DRM system specific formats and considered opaque
to the DASH client. A DASH client SHALL NOT modify the request body or the response
body.

The license request workflow defined here exists to enable the following goals to be
achieved without the need to customize the DASH client with logic specific to a DRM system
or license server implementation:

The proof of authorization is optional and the need to attach it to a license request is
indicated by the presence of at least one dashif:authzurl in the DRM system configuration.

1. Provide proof of authorization if the license server requires the DASH client to prove
that the user being served has the rights to use the requested content keys.

2. Execute the license request workflow driven purely by the MPD, without any need for
solution-specific logic and configuration.

3. Detect common error scenarios and present an understandable message to the user.

The proof of authorization is a JSON Web Token in compact encoding (the aaa.bbb.ccc form)
returned as the HTTP response body when the DASH client performs a GET request to this
URL. The token is attached to a license request in the HTTP Authorization header with the
Bearer type. For details, see § 10 DASH-IF interoperable license request model.

Error responses from both the authorization service and the license server SHOULD be
returned as [rfc7807] compatible responses with a 4xx or 5xx status code and Content-Type:

application/problem+json .

DASH clients SHOULD implement retry behavior to recover from transient failures and
expiration of authorization tokens.

To process license requests queued during execution of the DRM system activation
workflow, the client SHOULD execute the following algorithm:

1. Let pending_license_requests be the set of license requests that the DRM system has
requested to be performed, with at least the following data present in each entry:

The license request body provided by the DRM system.

The DRM system configuration.

2. Let retry_requests be an empty set. It will contain the set of license requests that are to
be retried due to transient failure.

3. Let pending_authz_requests be a map of URL -> GUID[] , with the keys being authorization
service URLs and the values being lists of default_KIDs . The map is initially empty.

4. For each request in pending_license_requests:

1. If the DRM system configuration does not contain at least one value for
dashif:authzurl , skip to the next loop iteration. This means that no authorization
token is to be attached to this license request.

2. Create/update the entry in pending_authz_requests with the key being the set of
dashif:authzurl values; add the default_KID to the list in the map entry value.

5. Let authz_tokens be a map of GUID -> string , with the keys being default_KIDs and the
values being the associated authorization tokens. The map is initially empty.

6. For each authz_url_set and kids pair in pending_authz_requests:

1. If the DASH client has a cached authorization token previously acquired for the
same authz_url_set and kids combination that still remains valid according to its
exp "Expiration Time" claim:

1. Let authz_token be the cached authorization token.

2. Else:

1. Create a comma-separated list from kids in ascending alphanumeric (ASCII)
order.

2. Let authz_url be a random item from authz_url_set.

3. Let authz_url_with_kids be authz_url with an additional query string parameter
named kids with the value from kids.

authz_url may already include query string parameters, which should be
preserved!

4. Perform an HTTP GET request to authz_url_with_kids (following redirects).

Include any relevant HTTP cookies.

Allow solution-specific logic and configuration to intercept the request
and inspect/modify it as needed (e.g. provide additional HTTP request
headers to enable user identification).

5. If the response status code indicates failure, make a note of any error
information for later processing and skip to the next authz_url.

6. Let authz_token be the HTTP response body.

7. Submit authz_token into the DASH client cache, with the cache key being a
combination of authz_url_set and kids, and the cache entry expiration being
defined by the exp "Expiration Time" claim in the authorization token
(defaulting to never expires).

3. For each kid in kids, add an entry to authz_tokens with the key kid and the value
being authz_token.

7. For each request in pending_license_requests:

1. If the DRM system configuration from request contains an authorization service
URL but there is no entry in authz_tokens keyed on the default_KID from request,
skip to the next loop iteration.

This occurs when an authorization token is required but cannot be obtained
for this license request.

2. Execute an HTTP POST request with the following parameters:

Request body is the license request body from request.

Request URL is defined by DRM system configuration. If multiple license
server URLs are defined, select a random URL from the set.

While the above algorithm is presented sequentially, authorization requests and license
requests may be performed in a parallelized manner to minimize processing time.

At the end of this algorithm, all pending license requests have been performed. However, it
is not necessary that all license requests or authorization requests succeed! For example,
even if one of the requests needed to obtain an HD quality level content key fails, other
requests may still make SD quality level content keys available, leading to a successful
playback if the HD quality level is deselected by the DASH client. Individual failing requests
therefore do not indicate a fatal error. Rather, such error information should be collected
and provided to the top-level error handler of the DRM system activation workflow, which
can make use of this data to present user-friendly messages if it decides that meaningful
playback cannot take place with the final set of available content keys. See also § 11.4
Handling unavailability of content keys.

If authz_tokens contains an entry with the key being the default_KID from
request, add the Authorization header with the value being the string Bearer
concatenated with a space and the authorization token from authz_tokens (e.g.
Bearer aaa.bbb.ccc).

3. If the response status code indicates failure:

1. Expel the used authorization token (if any) from the DASH client cache to
force a new token to be used for any future license requests.

2. If the DASH client believes that retrying the license request might succeed
(e.g. because the response indicates that the error might be transient or due
to an expired authorization token that can be renewed), add request to
retry_requests.

3. Make a note of any error information for later processing and presentation
to the user.

4. Skip to the next loop iteration.

4. Submit the HTTP response body to the DRM system for processing.

This may cause the DRM system to trigger additional license requests. Append
any triggered request to pending_license_requests and copy the DRM system
configuration from the current entry, processing the additional entry in a
future iteration of the same loop.

If the DRM system indicates a failure to process the data, make a note of any
error information for later processing and skip to the next loop iteration.

8. If retry_requests is not empty, re-execute this workflow with retry_requests as the input.

In some situations a DASH client can foresee the need to make new content keys available
for use or to renew the licenses that enable content keys to be used. For example:

DASH clients SHOULD perform license acquisition ahead of time, activating a DRM system
before it is needed or renewing licenses before they expire. This provides the following
benefits:

To avoid a huge number of concurrent license requests causing license server overload, a
DASH client SHOULD perform a license request at a randomly selected time between the
moment when it became aware of the need for the license request and the time when the
license must be provided to a DRM system (minus some safety margin).

Multiple license requests to the same license server with the same authorization token
SHOULD be batched into a single request if the media platform API supports this. See § 11.3
Activating the DRM system for details.

The possibility for ahead-of-time DRM system activation, seamless license renewal and
license request batching depends on the specific DRM system and media platform
implementations. Some implementations might not support optimal behavior.

In a live DASH presentation the rights of the user can be different for different programs
included in the presentation. This chapter describes recommended mechanisms for forcing
rights to be re-evaluated at program boundaries.

The user’s level of access to content is governed by the issuance (or not) of licenses with
content keys and the policy configuration carried by the licenses. The authorization server is

11.7.1. Efficient license acquisition§

Live DASH services can at any time introduce new periods that use different content
keys. They can also alternmate between encrypted and clear content in different
periods.

The license that enables a content key to be used can have an expiration time, after
which a new license is required.

Playback can continue seamlessly when licenses are renewed, without pausing for
license acquisition.

New content keys are already available when content needs them, again avoiding a
pause for license acquisition.

12. Periodic re-authorization§

the authority on what rights are assigned to the user and this is enforced by the license
server. To force re-evaluation of rights, a service must force a new license request to be
made. This can be accomplished by:

Not every DRM system supports real-time license expiration - some widely used
implementations only check license validity at activation time. Therefore the latter option is
a more universally applicable method to force re-evaluation of access rights. As changing
the content key is only possible on DASH period boundaries as the initialisation segment is
updated, live DASH presentations SHOULD create a new period in which content is
encrypted with new content keys to force re-evaluation of user’s access rights.

Using a key hierarchy allows a single content key to selectively unlock only a subset of a
DASH presentation and apply license policy updates without the need to perform license
requests at every program boundary. This mechanism is a specialization of periodic re-
authorization for scenarios where license requests at program boundaries are not always
desirable or possible.

1. Defining an expiration time on the license.

2. Changing the content key to one that is not yet available to DASH clients, thereby
triggering DRM system activation for the new content key.

NOTE: Changing the content keys does not increase the cryptographic security of
content protection. The term periodic re-authorization is therefore used here instead of
key rotation, to maintain focus on the goal and not the mechanism.

13. Controlling access rights with a key hierarchy§

Figure 11 A key hierarchy establishes a DRM system specific relationship between a root key and a set of
leaf keys.

A key hierarchy defines a multi-level structure of cryptographic keys, instead of a single
content key:

A root key might not be an actual cryptographic key. Rather, it acts as a reference to identify
the set of leaf keys that protect content. A DASH client requesting a license for a specific
root key will be interpreted as requesting a license that makes available all the leaf keys
associated with that root key.

This layering enables the user’s rights to content to be evaluated in two ways:

Root keys take the place of content keys in DASH client workflows.

Leaf keys are used to encrypt the media samples.

NOTE: Intermediate layers of cryptographic keys may also exist between root keys and
leaf keys but such layers are DRM system specific and only processed by the DRM
system, being transparent to the DASH client and the media platform. To a DASH client,
only the root keys have meaning. To the media platform, only the leaf keys have
meaning.

1. Changing the root key invokes the full re-evaluation workflow as a new license request
must be made by the DASH client.

2. Changing the leaf key invokes an evaluation of the rights granted by the license for the
root key and processing of any additional policy attached to the leaf key. If result of this
evaluation indicates the leaf key cannot be used, the DRM system will signal playback
failure to the DASH client.

Changing the root key is equivalent to changing the content key in terms of content and
MPD signaling, requiring a new period to be started. The leaf key can be changed in any
media segment and does not require modification of the MPD. Leaf keys SHOULD NOT be
changed within the same program. Changing leaf keys on a regular basis does not increase
cryptographic security.

The mechanism by which a set of leaf keys is made available based on a request for a root
key is DRM system specific. Nevertheless, different DRM systems may be interoperable as
long as they can each make available the required set of leaf keys using their system-specific
mechanisms, using the same root key as the identifier for the same set of leaf keys.

When using a key hierarchy, the leaf keys are typically delivered in-band in the media
segments, using moof/pssh boxes, together with additional/updated license policy
constraints. The exact implementation is DRM system specific and transparent to a DASH
client.

Figure 12 Different rows indicate root key changes. Color alternations indicate leaf key changes. A key
hierarchy enables per-program access control even in scenarios where a license request is only performed
once per day. The single license request makes available all the leaf keys that the user is authorized to use

during the next epoch.

A key hierarchy is useful for broadcast scenarios where license requests are not possible at
arbitrary times (e.g. when the system operates by performing nightly license updates). In
such a scenario, this mechanism enables user access rights to be cryptographically enforced
at program boundaries, defined on the fly by the service provider, while re-evaluating the
access rights during moments when license requests are possible. At the same time, it
enables the service provider to supply in-band updates to license policy (when supported by
the DRM system).

NOTE: A DASH service with a key hierarchy is sometimes referred to as using "internal
key rotation".

Similar functionality could be implemented without a key hierarchy by using a separate
content key for each program and acquiring all relevant licenses in advance. The advantages
of a key hierarchy are:

Clear Key is a DRM system defined by W3C in [encrypted-media]. It is intended primarily for
client and media platform development/test purposes and does not perform the content
protection and content key protection duties ordinarily expected from a DRM system.
Nevertheless, in DASH client DRM workflows, it is equivalent to a real DRM system.

A DRM system specific ContentProtection descriptor for Clear Key SHALL use the system ID
e2719d58-a985-b3c9-781a-b030af78d30e and value="ClearKey1.0" .

The dashif:laurl element SHOULD be used to indicate the license server URL. Legacy content
MAY also use an equivalent Laurl element from the http://dashif.org/guidelines/clearKey
namespace, as this was defined in previous versions of this document (the definition is now
expanded to also cover non-clearkey scenarios). Clients SHOULD process the legacy element
if it exists and dashif:laurl does not.

The license request and response format is defined in [encrypted-media].

W3C describes the use of the system ID 1077efec-c0b2-4d02-ace3-3c1e52e2fb4b in
[eme-initdata-cenc] section 4 to indicate that tracks are encrypted with Common Encryption.
However, the presence of this "common" pssh box does not imply that Clear Key is to be
used for decryption. DASH clients SHALL NOT interpret a pssh box with the system ID
1077efec-c0b2-4d02-ace3-3c1e52e2fb4b as an indication that the Clear Key mechanism is to be
used (nor as an indication of anything else beyond the use of Common Encryption).

Greatly reduced license acquisition traffic and required license storage size, as DRM
systems are optimized for efficient handling of large numbers of leaf keys.

Ability for the service provider to adjust license policy at any time, not only during
license request processing (if in-band policy updates are supported by the DRM
system).

14. Use of W3C Clear Key with DASH§

The namespace for the DASH-IF MPD extensions is https://dashif.org/ . This document refers
to this namespace using the dashif prefix. The XML schema of the extensions is:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:dashif="https://dashif.org/"
 targetNamespace="https://dashif.org/">

 <xs:element name="laurl" type="xs:anyURI"/>
 <xs:element name="authzurl" type="xs:anyURI"/>
</xs:schema>

Transport security in HTTP-based delivery may be achieved by using HTTP over TLS (HTTPS)
as specified in [RFC8446]. HTTPS is a protocol for secure communication which is widely

EXAMPLE 18

An example of a Clear Key ContentProtection descriptor using laurl is as follows.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" xmlns:dashif="https://dashif.org/">
 <Period>
 <AdaptationSet>
 <ContentProtection schemeIdUri="urn:uuid:e2719d58-a985-b3c9-781a-b030af78d30e" value=
 <dashif:laurl>https://clearKeyServer.foocompany.com</dashif:laurl>
 <dashif:laurl>file://cache/licenseInfo.txt</dashif:laurl>
 </ContentProtection>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this
is not a fully functional MPD file.

¶

15. XML Schema for DASH-IF MPD extensions§

16. HTTPS and DASH§

used on the Internet and also increasingly used for content streaming, mainly for
protecting:

As an MPD carries links to media resources, web browsers follow the W3C recommendation
[mixed-content]. To ensure that HTTPS benefits are maintained once the MPD is delivered, it
is recommended that if the MPD is delivered with HTTPS, then the media also be delivered
with HTTPS.

DASH also explicitly permits the use of HTTPS as a URI scheme and hence, HTTP over TLS as
a transport protocol. When using HTTPS in an MPD, one can for instance specify that all
media segments are delivered over HTTPS, by declaring that all the BaseURL ’s are HTTPS
based, as follow:

<BaseURL>https://cdn1.example.com/</BaseURL>
<BaseURL>https://cdn2.example.com/</BaseURL>

One can also use HTTPS for retrieving other types of data carried with a MPD that are HTTP-
URL based, such as, for example, DRM licenses specified within the ContentProtection
descriptor:

<ContentProtection
 schemeIdUri="urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 value="DRMNAME version"
 <dashif:laurl>https://MoviesSP.example.com/protect?license=kljklsdfiowek</dashif:laurl>
</ContentProtection>

It is recommended that HTTPS be adopted for delivering DASH content. It should be noted
nevertheless, that HTTPS does interfere with proxies that attempt to intercept, cache and/or
modify content between the client and the TLS termination point within the CDN. Since the
HTTPS traffic is opaque to these intermediate nodes, they can lose much of their intended
functionality when faced with HTTPS traffic.

While using HTTPS in DASH provides good protection for data exchanged between DASH
servers and clients, HTTPS only protects the transport link, but does not by itself provide an
enforcement mechanism for access control and usage policies on the streamed content.
HTTPS itself does not imply user authentication and content authorization (or access

The privacy of the exchanged data from eavesdropping by providing encryption of
bidirectional communications between a client and a server, and

The integrity of the exchanged data against forgery and tampering.

control). This is especially the case that HTTPS provides no protection to any streamed
content cached in a local buffer at a client for playback. HTTPS does not replace a DRM.

Information technology — MPEG systems technologies — Part 7: Common encryption in ISO
base media file format files. August 2023. Published. URL:
https://www.iso.org/standard/84637.html

Information technology — Multimedia application format (MPEG-A) — Part 19: Common
media application format (CMAF) for segmented media. February 2024. Published. URL:
https://www.iso.org/standard/85623.html

Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media
presentation description and segment formats. Under development. URL:
https://www.iso.org/standard/89027.html

Joey Parrish; Greg Freedman. "cenc" Initialization Data Format. URL:
https://w3c.github.io/encrypted-media/format-registry/initdata/cenc.html

Index§

Terms defined by this specification§

authorization token, in § 10.1

content key, in § 5

DRM system, in § 6

DRM system configuration, in § 9

key systems, in § 7.2

Leaf keys, in § 13

license, in § 5

media platform, in § 6

protection scheme, in § 7

required capability set, in § 11.1

robustness levels, in § 7.1

Root keys, in § 13

solution-specific logic and configuration, in
§ 6

References§

Normative References§

[CENC]

[CMAF]

[DASH]

[EME-INITDATA-CENC]

https://www.iso.org/standard/84637.html
https://www.iso.org/standard/84637.html
https://www.iso.org/standard/84637.html
https://www.iso.org/standard/85623.html
https://www.iso.org/standard/85623.html
https://www.iso.org/standard/85623.html
https://www.iso.org/standard/89027.html
https://www.iso.org/standard/89027.html
https://www.iso.org/standard/89027.html
https://w3c.github.io/encrypted-media/format-registry/initdata/cenc.html
https://w3c.github.io/encrypted-media/format-registry/initdata/cenc.html

Joey Parrish; Greg Freedman. Encrypted Media Extensions. URL:
https://w3c.github.io/encrypted-media/

Information technology — Coding of audio-visual objects — Part 12: ISO base media file
format. Under development. URL: https://www.iso.org/standard/85596.html

M. Jones; J. Bradley; N. Sakimura. JSON Web Signature (JWS). May 2015. Proposed
Standard. URL: https://www.rfc-editor.org/rfc/rfc7515

M. Jones; J. Bradley; N. Sakimura. JSON Web Token (JWT). May 2015. Proposed Standard.
URL: https://www.rfc-editor.org/rfc/rfc7519

Emily Stark; Mike West; Carlos IbarraLopez. Mixed Content. URL:
https://w3c.github.io/webappsec-mixed-content/

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best
Current Practice. URL: https://datatracker.ietf.org/doc/html/rfc2119

M. Nottingham; E. Wilde. Problem Details for HTTP APIs. March 2016. Proposed Standard.
URL: https://www.rfc-editor.org/rfc/rfc7807

E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. August 2018. Proposed
Standard. URL: https://www.rfc-editor.org/rfc/rfc8446

Protocol Extension for Low-Latency HLS (Preliminary Specification). URL:
https://developer.apple.com/documentation/http_live_streaming/protocol_extension_fo
r_low-latency_hls_preliminary_specification

Information technology — MPEG systems technologies — Part 12: Sample variants.
December 2018. Published. URL: https://www.iso.org/standard/74431.html

M. Jones; J. Hildebrand. JSON Web Encryption (JWE). May 2015. Proposed Standard. URL:
https://www.rfc-editor.org/rfc/rfc7516

[ENCRYPTED-MEDIA]

[ISOBMFF]

[JWS]

[JWT]

[MIXED-CONTENT]

[RFC2119]

[RFC7807]

[RFC8446]

Informative References§

[HLS-LowLatency]

[ISO23001-12]

[JWE]

https://w3c.github.io/encrypted-media/
https://w3c.github.io/encrypted-media/
https://www.iso.org/standard/85596.html
https://www.iso.org/standard/85596.html
https://www.iso.org/standard/85596.html
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7519
https://w3c.github.io/webappsec-mixed-content/
https://w3c.github.io/webappsec-mixed-content/
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/rfc/rfc7807
https://www.rfc-editor.org/rfc/rfc7807
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8446
https://developer.apple.com/documentation/http_live_streaming/protocol_extension_for_low-latency_hls_preliminary_specification
https://developer.apple.com/documentation/http_live_streaming/protocol_extension_for_low-latency_hls_preliminary_specification
https://developer.apple.com/documentation/http_live_streaming/protocol_extension_for_low-latency_hls_preliminary_specification
https://www.iso.org/standard/74431.html
https://www.iso.org/standard/74431.html
https://www.rfc-editor.org/rfc/rfc7516
https://www.rfc-editor.org/rfc/rfc7516

PlayReady Content Encryption Modes. URL: https://docs.microsoft.com/en-
us/playready/packaging/content-encryption-modes

[MSPR-EncryptionModes]

Issues Index§

↵

ISSUE 1 The above paragraph on URL handling should be generalized to all sets of
alternative URLs but there does not seem to be a suitable chapter in v4.3 If such a
chapter is created in v5, we could replace the above paragraph with a reference to the
general URL handling guidelines.

↵
ISSUE 2 Let’s come up with a good set of useful problem types we can define here, to
reduce the set of problem types that must be defined in solution-specific scope.

https://docs.microsoft.com/en-us/playready/packaging/content-encryption-modes
https://docs.microsoft.com/en-us/playready/packaging/content-encryption-modes
https://docs.microsoft.com/en-us/playready/packaging/content-encryption-modes

