
DASH-IF IOP Document Authoring

https://dashif.org/Guidelines/master/authoring.html

GitHub
Inline In Spec

SVTA DASH-IF Working Group

Thasso Griebel

Authoring

Table of Contents

1 Purpose

2 Local Editing Setup

3 Remote Editing Setup

4 Creating and Editing a Document

5 Folder Structure

6 Document Editing

Living Document, 26 February 2025

This version:

Issue Tracking:

Editor:

Contributor:

Key Word:

https://dashif.org/
https://dashif.org/
https://dashif.org/Guidelines/master/authoring.html
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues

6.1 Markdown Basics

6.2 Highlighting notes

6.3 Issues

6.4 Examples

6.5 Headings and references

6.6 Mermaid Diagrams

6.7 Inserting images

6.8 Inserting Links

6.9 Tables

6.10 Referencing illustrations and tables

6.11 Defining terms

6.12 Defining data structures

6.13 References to external documents

6.14 Embedding formulas

Index
Terms defined by this specification

References
Normative References

Informative References

Issues Index

This document outlines the methodology and tools utilized in the authoring process for
the DASH-IF IOP repository.

To streamline and enhance the creation of our documents, we employ a suite of open
source tools and packages. These tools are integral to our workflow, enabling us to
produce high-quality, well-structured, and visually engaging documents. Below is an
overview of the tools we use:

1. Purpose§

Bikeshed is our primary tool for drafting and maintaining the core text and
documents. It offers robust features for creating comprehensive specifications,

https://github.com/dash-Industry-Forum/DASH-IF-IOP
https://speced.github.io/bikeshed/

The primary idea is to wrap to make editing of content easy within a GitHub Pull Request
based workflow. This means that all the primary text is written as markdown. In addition
to this, we process the resulting documents with various tools. The entire build pipeline
is exposed as a single Docker Container that is publicly available and can be fetched and
updated on demand.

With the above in mind, what you need to do to get started including checking your edits
locally is to:

including syntax highlighting, automatic cross-references, and customizable
formatting.

Mermaid is employed for diagramming within our documents. This tool allows us to
visualize complex information, workflows, and relationships through a variety of
diagram types, such as flowcharts, sequence diagrams, and class diagrams. The
integration of Mermaid enhances the readability and comprehension of our
documentation, making intricate concepts more accessible to our audience.
Mermaid is also supported by GitHub markdown rendering directly.

PlantUML is another tool that will be part of the stack and allow us to create
visualizations.

ISSUE 1 Implement support for PlantUML ¶

Docker is utilized to run the builds and create the resulting documents. By
leveraging Docker, we achieve a consistent and reproducible environment for our
documentation pipeline. This ensures that our build process is reliable and that the
final documents are generated accurately every time.

2. Local Editing Setup§

Install Docker

Windows Instructions

Mac OS Instructions

Linux Instructions

Open the files to edit with your text editor of choice. Visual Studio Code is a good
choice for markdown editing, but there are a lot of other editors available for that
purpose.

https://www.docker.com/
https://mermaid.js.org/
https://plantuml.com/
https://www.docker.com/
https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/install/mac-install/
https://docs.docker.com/desktop/install/linux-install/
https://code.visualstudio.com/

You might notice that the first build run will take a moment since the respective
container needs to be downloaded. Subsequent runs will be faster after that initial
bootstrap.

With the above command, _all_ the documents will be generated and you find the
results in the dist folder.

When you are working on a specific document, you can also use the following
commands. For example for authoring :

To quickly edit text in a GitHub repository, you can use the github.dev browser-based
editor. Simply press . while viewing the repository to open the editor in your browser.
This will launch a lightweight version of VSCode where you can edit files, create
branches, commit changes, and open pull requests directly from the browser.

However, note that this method doesn’t allow you to preview rendered HTML since the
environment doesn’t support running builds.

If you need to edit documents and preview them, you can use GitHub Codespaces,
which provides a full development environment in the cloud. While not entirely free,
GitHub offers a monthly quota of free minutes for Codespaces usage.

Clone the repository repository, i.e. git clone git@github.com:Dash-Industry-

Forum/DASH-IF-IOP.git

Change to the cloned folder and build things locally:

./build.sh on Mac or Linux

build.bat on Windows

./build.sh authoring will build only the authoring related artifacts

./build.sh authoring.html will build the html version

./build.sh authoring.pdf will build the pdf version

./build.sh authoring-watch will build the html version and start watching the related
documents for changes. If a change is detected, i.e. you edit one of the included
markdown files and save, the page is re-generated. Reload the browser page and
you will see the updated version. This process will keep on\ running until you
terminate it with Ctrl-C .

3. Remote Editing Setup§

https://docs.github.com/en/codespaces/the-githubdev-web-based-editor
https://github.com/Dash-Industry-Forum/DASH-IF-IOP

Once your Codespaces is set up, you can run the build using the build.sh script located in
the root folder. To preview the generated HTML, install the "Live Preview" extension by
Microsoft. After running the build, expand the dist folder, right-click on one of the
generated HTML files, and select "Show Preview." This will launch an internal server and
allow you to view the results in a browser window.

The key advantage of using Codespaces is that it simulates a local development
environment without needing to install any tools on your machine. However, be mindful
that Codespaces usage may incur costs after your free minutes are exhausted, and it
requires working within VSCode.

As described in § 5 Folder Structure, you will find individual documents in folders inside
the specs folder, for instance specs/authoring for this document.

A document consists of exactly one .bs bikeshed file and can have many additional
markdown (.md) files that are included in the bikeshed document. For example, this
document is primarily written in authoring.md . The corresponding authoring.bs bikeshed
document contains additional meta-data and includes of other files. For example:

<pre class="metadata">
Revision: 0.1
Title: DASH-IF IOP Document Authoring
Status: LD
Shortname: authoring
URL: https://dashif.org/Guidelines/master/authoring.html
Group: dashif

!Contributor: Thasso Griebel
!Key Word: Authoring
!Related Features:
</pre>

<pre class=include>
path: authoring.md
</pre>

Note how the authoring.md file is included at the bottom. If your document consists of
multiple markdown files, you have to add multiple includes in the bikeshed document.

4. Creating and Editing a Document§

Besides this, the file must contain the <pre class="metadata"> section. This is where
surrounding document meta-data go including the Title, the Status, URLs. etc. There are
more details on the meta-data keys that are available in the Bikeshed Documentation.

The following keys are mandatory for our documents to be rendered correctly:

The repository is organized in the following way. Note that the folder structure is
important for some of the tooling to work as expected.

Any spec document folder should contain the following files or folders.

Group: dashif -- We have custom boilerplate for the dashif group that is part of the
tooling and identified by the group name.

5. Folder Structure§

specs This folder contains sub-folders, one for each document that is managed and
maintained as part of this repository.

build-tools This folder container the build tools and describes the Docker container
that we use.

data This folder contains boilerplate data that is used by all documented. For
example, the common header or the logo snippet.

dist This folder is explicitly excluded from the git repository but this is where all the
output of a build will be written to.

biblio.json is a JSON file with custom SpecRef references. Note that is is much better
to submit a missing ref to SpecRef instead of using custom references.

A .bs file that is the actual Bikeshed file and will be used as an entry point. Note that
there should be only one .bs file in each specs sub-folder.

Any number of additional *.md files. Note that these files are not processed by
default, but can be included in a bikeshed source.

Images folder. This folder will be copied as is to the resulting document structure.
Add any images that you want to include here.

Diagrams folder. Files in this folder will be pushed through plantuml to generate
images that in turn can be included in the document.

https://speced.github.io/bikeshed/#metadata
https://www.specref.org/

We are using Bikeshed to write documents. Bikeshed supports a subset of common
markdown as well as html tags in the same document.

In addition we included a few other tools that can be used to write content. This section
describes some of the Bikeshed features that we rely on, some details around the
markdown flavor that is used by Bikeshed, as well as the usage of the additional tools
that are integrated into our editing and publishing pipeline.

Please refer to the Bikeshed documentation on markdown for more details.

Here we just describe the fundamentals that are supported.

Surrounding a word with ` or \~ will create inline code, i.e. `code` becomes code . You can
also use triple ` or \~ to create a code block, i.e.

```
This is a code block
```

becomes

This is a code block

6. Document Editing§

6.1. Markdown Basics§

Bold becomes Bold

Italic becomes Italic

, ## , ### etc create headings. There are more details around headings in § 6.5
Headings and references.

https://speced.github.io/bikeshed/
https://speced.github.io/bikeshed/

By default we render the content of code blocks as text. However, if you know the
language, you can create highlighted code by naming the language after the triple `. For
example

```xml
<MPD xmlns="urn:mpeg:dash:schema:mpd:2011"
     minBufferTime="PT1.920S" type="static"
     mediaPresentationDuration="PT0H0M28.800S"
     maxSegmentDuration="PT0H0M1.920S"
     profiles="urn:mpeg:dash:profile:full:2011,urn:mpeg:dash:profile:cmaf:2019">
  ...
</MPD>
```

will render highlighted xml:

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011"
 minBufferTime="PT1.920S" type="static"
 mediaPresentationDuration="PT0H0M28.800S"
 maxSegmentDuration="PT0H0M1.920S"
 profiles="urn:mpeg:dash:profile:full:2011,urn:mpeg:dash:profile:cmaf:2019">
 ...
</MPD>

* or - is used to create unordered lists potentially with sub-items. For example:

* This is one item
* This is another item
 * With a sub item

is rendered as

You can use --- to create a horizontal rule. For example

This is one item

This is another item

With a sub item

�  �  �

Markdown syntax for links is [name](link) , for example [Bikeshed]

(https://speced.github.io/bikeshed) becomes Bikeshed.

Paragraphs starting with Note: and Advisement: will be highlighted in the output
document. Notes are considered informative, whereas advisements are normative.

Note:

Advisement: Bee stings hurt!

For example

Note: Bees can fly up to two miles to find nectar and pollen.

becomes

and

Advisement: Bee stings hurt!

becomes

Bee stings hurt!

6.2. Highlighting notes§

NOTE: Bees can fly up to two miles to find nectar and pollen.

https://speced.github.io/bikeshed

You can also use html elements and css classes to create these blocks. This is useful if
you want to write more extended notes that span multiple paragraphs or contain
images.

<div class="note" role="note">
This is a note that can be longer. In here I can use markdown **like this**.

And we can also write multiple paragraphs here.
</div>

becomes

Bikeshed supports inline issues by starting a paragraph with Issue: . For example

Issue: Maybe we need details on issues

becomes

You have to use HTML to create examples, for instance

<div class=example>
This is an example.
</div>

becomes

This is a note that can be longer. In here I can use markdown like this.

And we can also write multiple paragraphs here.

6.3. Issues§

ISSUE 2 Maybe we need details on issues ¶

6.4. Examples§

To uniquely identify a heading for referencing purposes, you must explicitly add an
anchor. The anchor is the {#xyz} tag at the end of the heading. For this, the heading
needs to end with the same number of # characters

First # {#first}
First ## {#second}
Headings and references ### {#headings}

Use the anchor to reference the heading elsewhere in the text. The link will
automatically be replaced with the heading text. For example [[#headings]] becomes
§ 6.5 Headings and references. This will insert the header title as a link. You can also
customize the link text using a pipe (|) character. For example, [[#headings|here]]

becomes here.

Always add an anchor to every heading, even those you do not currently reference -
other people might want to link to them later!

You can use Mermaid to add diagrams to the document. One benefit of mermaid is that
this is also supported natively when viewing markdown documents on GitHub.

For example

<pre class="mermaid">
 graph TD
 A[Client] --> B[Load Balancer]
 B --> C[Server01]
 B --> D[Server02]
</pre>

EXAMPLE 1
This is an example.

¶

6.5. Headings and references§

6.6. Mermaid Diagrams§

https://mermaid.js.org/

becomes

Client

Load Balancer

Server01 Server02

To create a caption, you can simply wrap a mermaid diagram in a <figure> tag.

<figure>
 <pre class="mermaid">
 graph TD
 A[Client] --> B[Load Balancer]
 B --> C[Server01]
 B --> D[Server02]
 </pre>
 <figcaption>Example Mermaid diagram.</figcaption>
</figure>

becomes

Client

Load Balancer

Server01 Server02

Figure 1 Example Mermaid diagram.

Use HTML to insert images. The recommended format is:

<figure>

 <figcaption>Example image.</figcaption>
</figure>

becomes

Figure 2 Example image.

You must place all static images and manually exported diagrams in the Images/
directory.

Use Markdown link syntax for links to the web.

[Click here for an adventure](https://zombo.com)

becomes

Click here for an adventure

Use HTML for tables.

6.7. Inserting images§

6.8. Inserting Links§

6.9. Tables§

https://zombo.com/

Enclose tables in figure tags and provide a caption using figcaption to enable automatic
numbering.

<figure>
 <table class="data">
 <thead>
 <tr>
 <th>Animal
 <th>Feet
 <th>Average height
 <tbody>
 <tr>
 <td>Duck
 <td>2
 <td>1 foot
 <tr>
 <td>Cow
 <td>4
 <td>1.612 meters
 <tr>
 <td>Cat
 <td>4
 <td>Not too much
 </table>
 <figcaption>Listing of critical animal measurements.</figcaption>
</figure>

Renders as

Animal Feet Average height

Duck 2 1 foot

Cow 4 1.612 meters

Cat 4 Not too much

Figure 3 Listing of critical animal measurements.

The data class is a builtin table style suitable for presenting data. An alternative builtin
style you can use is the def class.

Add an ID to the figure element and reference it in a hyperlink. Here is an example of a
reference target:

<figure id="animal-facts">
 ...
</figure>

renders as

This is a figure
Figure 4 The figure caption

You can link to the figure using basic facts on important animals
which will render as basic facts on important animals.

Use the <dfn> element to define a term. You can use it anywhere in text but a common
approach is to use a key-value table:

: <dfn>apricot</dfn>
:: An apricot is a fruit, or the tree that bears the fruit, of several species
 in the genus Prunus
: <dfn>apple</dfn>
:: An apple is a sweet, edible fruit produced by an apple tree.

becomes

An apricot is a fruit, or the tree that bears the fruit, of several species in the genus
Prunus

6.10. Referencing illustrations and tables§

6.11. Defining terms§

apricot

An apple is a sweet, edible fruit produced by an apple tree.

You can reference defined terms using [=apple=] . This will create a link to apple

Singular/plural matching is built-in so you can use [=apples=] to link to apples.
Additionally you can use a pipe character to specify custom text for the generated link if
you need to, i.e. use [=apple|fruit of the apple tree=] to write "Not every fruit of the apple
tree is red".

If you define, for example, an XML schema or another type of data format, use the
Bikeshed HTML element reference syntax to enable automatic cross-referencing.

For example, consider the following XML element:

<employee id="123">
 <name>John Jackson</name>
<employee>

Use <dfn element>employee</dfn> to mark it as an element that may have children as
attributes. The common situation is to do this in a document section heading:

<dfn element>employee</dfn> element ## {#schema-employee}

Then use the definition list syntax below to define its children:

<dl dfn-type="element-attr" dfn-for="employee">

: <dfn>id</dfn> (required, attribute, xs:integer)
:: Employee ID.

: <dfn>name</dfn> (required, xs:string)

apple

NOTE: You can find more details about Defining terms in the Bikeshed
Documentation.

6.12. Defining data structures§

https://speced.github.io/bikeshed/#definitions
https://speced.github.io/bikeshed/#definitions

:: The full name of the employee.

</dl>

You can later reference the element as <{employee}> and its children as
<{employee/name}> .

You can directly reference any document listed in the SpecRef catalog using [[!rfc7168]]
(normative) and [[rfc2324]] (informative) tags in text. Such tags will be replaced with a
suitable hyperlink during document compilation and, if the reference is normative, the
referenced document will be added to the bibliography section.

This is a normative references to [rfc7168] while we add an informative reference to
[rfc2324].

To use custom bibliography entries, update the biblio.json file in the root folder of the
repository.

SpecRef accepts contributions. If you do not find a document in the catalog, consider
adding it to SpecRef instead of maintaining a custom bibliography section.

You can use TeX syntax for formulas. Surround inline content with \(and \) and block
content with $$.

When \(a \ne 0\) there are two solutions to \(ax^2 + bx + c = 0\)
and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

The above produces the following output.

When there are two solutions to and they are

6.13. References to external documents§

NOTE: allow up to 24 hours for caches to update after a contribution is merged to
the SpecRef database.

6.14. Embedding formulas§

a ≠ 0 ax
2 + bx + c = 0

https://specref.org/
https://github.com/tobie/specref#updating--adding-new-references

I. Nazar. The Hyper Text Coffee Pot Control Protocol for Tea Efflux Appliances (HTCPCP-
TEA). 1 April 2014. Informational. URL: https://www.rfc-editor.org/rfc/rfc7168

L. Masinter. Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0). 1 April 1998.
Informational. URL: https://www.rfc-editor.org/rfc/rfc2324

x =
−b ± √b2 − 4ac

2a
.

Index§

Terms defined by this specification§

apple, in § 6.11 apricot, in § 6.11

References§

Normative References§

[RFC7168]

Informative References§

[RFC2324]

Issues Index§

�ISSUE 1 Implement support for PlantUML

�ISSUE 2 Maybe we need details on issues

https://www.rfc-editor.org/rfc/rfc7168
https://www.rfc-editor.org/rfc/rfc7168
https://www.rfc-editor.org/rfc/rfc7168
https://www.rfc-editor.org/rfc/rfc2324
https://www.rfc-editor.org/rfc/rfc2324

