
DASH-IF Live Media Ingest Protocol

https://dashif.org/guidelines/

GitHub

DASH-IF Ingest TF

Table of Contents

1 Specification: Live Media Ingest

1.1 Abstract

1.2 Copyright Notice and Disclaimer

2 Introduction

3 Conventions and Terminology

4 Media Ingest Workflows and Interfaces (Informative)

5 Common Requirements for Interface-1 and Interface-2
5.1 Ingest Source Identification

5.2 General Requirements

5.3 Failure Behaviors

5.4 Identifier

6 Interface-1: CMAF Ingest

6.1 General Considerations (Informative)

6.2 General Protocol, Manifest and Track Format Requirements

6.3 Requirements for Formatting Media Tracks

6.4 Requirements for Signaling Switching Sets

6.5 Requirements for Timed Text, Captions and Subtitle Tracks

6.6 Requirements for Timed Metadata Tracks

6.7 Requirements for Signaling and Conditioning Splice Points

6.8 Requirements for Failovers and Connection Error Handling

Technical Specification, 28 February 2024

This version:

Issue Tracking:

Editor:

https://dashif.org/guidelines/
https://github.com/Dash-Industry-Forum/Ingest/issues

6.9 Requirements for Ingest Source Synchronization

6.10 Identifier

7 Interface-2: DASH and HLS Ingest
7.1 General Requirements

7.1.1 HTTP Sessions

7.1.2 Unique Segment and Manifest Naming

7.1.3 Additional Failure Behaviors

7.2 DASH-Specific Requirements

7.2.1 File Extensions and MIME Types

7.2.2 Relative Paths

7.3 HLS-Specific Requirements

7.3.1 File Extensions and MIME Types

7.3.2 Relative Paths

7.3.3 Encryption

7.3.4 Upload Order

7.3.5 Resiliency

7.4 Identifier

8 Examples (Informative)
8.1 Example 1: CMAF Ingest and a Just-in-Time Packager

8.2 Example 2: Low-Latency DASH, and Combination of Interface-1 and Interface-2

9 Implementations (Informative)
9.1 Implementation 1: FFmpeg Support for Interface-1 and Interface-2

9.2 Implementation 2: Ingesting CMAF Track Files Based on fmp4 Tools

10 List of Versions and Changes
10.1 Version 1.0

10.2 Version 1.1

10.3 Version 1.2

11 Acknowledgements

12 URL References

Index
Terms defined by this specification

References
Normative References

Two closely related protocol interfaces are defined: CMAF Ingest (Interface-1) based on fragmented
MP4 and DASH/HLS Ingest (Interface-2) based on DASH and HLS. Both interfaces use the HTTP POST
(or PUT) method to transmit media objects from an ingest source to a receiving entity. Smart
implementations can implement and support both at the same time. These interfaces support
carriage of audiovisual media, timed metadata and timed text. Examples of workflows using these
interfaces are provided. In addition, guidelines for synchronization of multiple ingest sources,
redundancy and failover are presented.

The current version of the protocol is 1.2.

Review these documents carefully as they describe your rights and restrictions with respect to this
document. Code Components extracted from this document must include Simplified BSD License
text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This is a document made available by DASH-IF. The technology embodied in this document may
involve the use of intellectual property rights, including patents and patent applications owned or
controlled by any of the authors or developers of this document. No patent license, either implied or
express, is granted to you by this document. DASH-IF has made no search or investigation for such
rights and DASH-IF disclaims any duty to do so. The rights and obligations which apply to DASH-IF
documents, as such rights and obligations are set forth and defined in the DASH-IF Bylaws and IPR
Policy including, but not limited to, patent and other intellectual property license rights and
obligations. A copy of the DASH-IF Bylaws and IPR Policy can be obtained at http://dashif.org/.

The material contained herein is provided on an AS IS basis. The authors and developers of this
material and DASH-IF hereby disclaim all other warranties and conditions, either express, implied or
statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of
merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of
workmanlike effort, and of lack of negligence. In addition, this document may include references to
documents and/or technologies controlled by third parties. Those third party documents and
technologies may be subject to third party rules and licensing terms. No intellectual property
license, either implied or express, to any third party material is granted to you by this document or
DASH-IF. DASH-IF makes no warranty whatsoever for such third party material.

1. Specification: Live Media Ingest§

1.1. Abstract§

1.2. Copyright Notice and Disclaimer§

The main goal of this specification is to define the interoperability points between an ingest source
and a receiving entity that typically reside in the cloud or network. This specification does not
impose any new constraints or requirements to clients that consume media streams.

Live media ingest happens between an ingest source such as a live encoder and a receiving entity.
The receiving entity could be a media packager, streaming origin or a content delivery network
(CDN) or another cloud media service. The combination of ingest sources and receiving entities is
common in practical video streaming deployments, where media processing functionality is
distributed between the ingest sources and receiving entities. Nevertheless, in such deployments,
interoperability can sometimes be challenging. This challenge comes from the fact that there are
multiple levels of interoperability to be considered and vendors may have a different view of what is
expected/preferred as well as how various technical specifications apply. First of all, the choice for
the data transmission protocol, and connection establishing and tearing down are important.
Handling premature/unexpected disconnects and recovering from failovers are also critical.

A second level of interoperability lies with the media container and coded media formats. MPEG
defined several media container formats such as [ISOBMFF] and [MPEG2TS], which are widely
adopted and well supported. However, these are general purpose formats, targeting several
different application areas. To do so, they provide many different profiles and options.
Interoperability is often achieved through other application standards such as those for broadcast,
storage or streaming. For interoperable live media ingest, this document provides guidance on how
to use [ISOBMFF] and [MPEGCMAF] for formatting the media content.

A third level of interoperability lies in the way metadata is inserted in streams. Live content often
needs such metadata to signal opportunities for ad insertion, program information or other
attributes like timed graphics or general information relating to the broadcast. Examples of such
metadata formats include [SCTE35] markers, which are often found in broadcast streams and other
metadata such as ID3 tags [ID3v2] containing information relating to the media presentation. In fact,
many more types of metadata relating to the live event might be ingested and passed on to an over-
the-top (OTT) streaming workflow.

Fourth, for live media, handling the timeline of the presentation consistently is important. This
includes sampling of the media, avoiding timeline discontinuities and synchronizing timestamps
attached by different ingest sources such as audio and video. In addition, media timeline
discontinuities must be avoided as much as possible during normal operation. Further, when using
redundant ingest sources, the ingested streams must be synchronized in a sample accurate
manner.

Fifth, in practice multiple ingest sources and receiving entities are often used. This requires that
multiple ingest sources and receiving entities work together in a redundant workflow to avoid
interruptions when some of the components fail. Well defined failover behavior is important for
interoperability.

2. Introduction§

This document provides a specification for establishing these interoperability points. The
approaches are based on known standardized technologies that have been tested and deployed in
several large-scale streaming deployments.

To address these interoperability points, two different interfaces and their protocol specifications
have been developed. The first interface (CMAF Ingest) mainly functions as an ingest format to a
packager or active media processor, while the second interface (DASH/HLS Ingest) works mainly to
ingest media presentations to an origin server, cloud storage or CDN. Smart implementations can
implement both interfaces at once. With CMAF being used increasingly by both DASH and HLS in
practice this would be a preferred implementation option.

§ 4 Media Ingest Workflows and Interfaces (Informative) provides more background and motivation
for the two interfaces. We further motivate the specification in this document supporting HTTP/1.1
[rfc9112] and [ISOBMFF].

The document is structured as follows: Section 3 presents the conventions and terminology used
throughout this document. Section 4 presents the use cases and workflows related to media ingest
and the two interfaces. Section 5 lists the common requirements for both interfaces. Sections 6 and
7 detail Interface-1 and Interface-2, respectively. Sections 8 provides example workflows and Section
9 shows example implementations.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in BCP 14, RFC 2119 [RFC2119].

The following terminology is used in the rest of this document:

ABR: Adaptive bitrate.

CMAF chunk: CMAF media object defined in [MPEGCMAF] clause 7.3.2.3.

CMAF fragment: CMAF media object defined in [MPEGCMAF] clause 7.3.2.4.

CMAF header: Defined in [MPEGCMAF] clause 7.3.2.1.

CMAF Ingest: Ingest interface defined in this specification for push-based [MPEGCMAF].

CMAF media object: Defined in [MPEGCMAF]: a CMAF chunk, segment, fragment or track.

CMAF presentation: Logical grouping of CMAF tracks corresponding to a media presentation as
defined in [MPEGCMAF] clause 6.

CMAFstream: Byte-stream that follows the CMAF track format structure format defined in
[MPEGCMAF] between the ingest source and receiving entity. Due to error control behavior such as
retransmission of CMAF fragments and headers, a CMAFstream may not fully conform to a CMAF

3. Conventions and Terminology§

track file. The receiving entity can filter out retransmitted fragments and headers and restore a valid
CMAF track from the CMAFstream.

CMAF track: CMAF media object defined in [MPEGCMAF] clause 7.3.2.2.

connection: A connection setup between two hosts, typically the media ingest source and receiving
entity.

DASH Ingest: Ingest interface defined in this specification for push-based DASH.

HLS Ingest: Ingest interface defined in this specification for push-based HLS.

HTTP POST: HTTP command for sending data from a source to a destination.

HTTP PUT: HTTP command for sending data from a source to a destination.

ingest source: A media source ingesting live media content to a receiving entity. It is typically a live
encoder but not restricted to this, e.g., it could be a stored media resource.

ingest stream: The stream of media pushed from the ingest source to the receiving entity.

live stream session: The entire live stream for the ingest relating to a broadcast event.

live encoder: Entity performing live encoding of a high quality ingest stream. This can serve as an
ingest source.

manifest objects: Objects ingested that represent streaming manifest, e.g., .mpd in DASH and
.m3u8 in HLS.

media objects: Objects ingested that represent the media, timed text or other non-manifest objects.
Typically, these are CMAF addressable media objects such as CMAF chunks, segments or tracks.

media fragment: Media fragment, combination of MovieFragmentBox ("moof") and MediaDataBox
("mdat") in ISOBMFF structure. This could be a CMAF fragment or chunk. A media fragment may
include top-level boxes defined in CMAF fragments such as "emsg", "prft" and "styp". Used for
backward compatibility with fragmented MP4.

objects: Manifest objects or media objects.

OTT: Over-the-top.

POST_URL: Target URL of a POST command in the HTTP protocol for posting data from a source to a
destination (e.g., /ingest1). The POST_URL is known by both the ingest source and receiving entity.
The POST_URL is setup by the receiving entity. The ingest source may add extended paths to signal
track names, fragment names or segment names.

publishing_point_URL: Entry point used to receive an ingest stream (e.g.,
https://example.com/ingest1).

receiving entity: Entity used to receive the media content, receives/consumes an ingest stream.

RTP: Real-time Transport Protocol as specified in [RFC3550].

streaming presentation: Set of objects composing a streaming presentation based on a streaming
protocol such as DASH.

switching set: Group of tracks corresponding to a switching set defined in [MPEGCMAF] or an
adaptation set defined in [MPEGDASH].

switching set ID: Identifier generated by a live ingest source to group CMAF tracks in a switching set.
The switching set ID is unique for each switching set in a live stream session.

TCP: Transmission Control Protocol (TCP) as specified in [RFC793].

baseMediaDecodeTime: Decode time of the first sample in a movie fragment as signaled in the "tfdt"
box.

elng: The ExtendedLanguageTag box ("elng") as defined in [ISOBMFF] overrides the language
information.

ftyp: The FileTypeBox ("ftyp") as defined in [ISOBMFF].

mdat: The MediaDataBox ("mdat") defined in [ISOBMFF].

mdhd: The MediaHeaderBox ("mdhd") as defined in [ISOBMFF] contains information about the
media such as timescale, duration, language using ISO 639-2/T [iso-639-2] codes.

mfra (deprecated): The MovieFragmentRandomAccessBox ("mfra") defined in [ISOBMFF] signals
random access samples (these are samples that require no prior or other samples for decoding).

moof: The MovieFragmentBox ("moof") as defined in [ISOBMFF].

nmhd: The NullMediaHeaderBox ("nmhd") as defined in [ISOBMFF] signals a track for which no
specific media header is defined. This is used for metadata tracks.

prft: The ProducerReferenceTime ("prft") as defined in [ISOBMFF] supplies times corresponding to
the production of associated movie fragments.

tfdt: The TrackFragmentBaseMediaDecodeTimeBox ("tfdt") defined in [ISOBMFF] signals the decode
time of the first sample in the movie fragment.

Two workflows have been identified mapping to two protocol interfaces. The first workflow uses a
live encoder as the ingest source and a separate packager as the receiving entity. In this case,
Interface-1 (CMAF Ingest) is used to ingest a live encoded stream to the packager, which can perform
packaging, encryption or other active media processing. Interface-1 is defined in a way that it will be

4. Media Ingest Workflows and Interfaces (Informative)§

possible to generate DASH or HLS presentations based on information in the ingested stream.
Figure 1 shows an example for Interface-1. In many cases a common implementation is possible.

Figure 1: Example with CMAF Ingest.

The second workflow constitutes ingest to a passive delivery system such as a cloud storage or a
CDN. In this case, Interface-2 (DASH Ingest or HLS Ingest) is used to ingest a stream already
formatted to be ready for delivery to an end client. Figure 2 shows an example for Interface-2.

Figure 2: Example with DASH Ingest.

A legacy example of a media ingest protocol for the first workflow is the ingest part of the Microsoft
Smooth Streaming protocol [MS-SSTR]. Interface-1 (CMAF Ingest, detailed in § 6 Interface-1: CMAF
Ingest) improves the Smooth Streaming’s ingest protocol including lessons learned over the last ten
years after the initial deployment of Smooth Streaming in 2009 and several advances on signaling
metadata and timed text. In addition, it includes support for next-generation media codecs such as
[MPEGHEVC] and protocols like DASH [MPEGDASH] by adding explicit support for MPEG-DASH
Media presentation description.

Interface-2 (DASH/HLS Ingest) is included for ingest of media streaming presentations to a passive
receiving entity that provides a pass-through functionality. In this case, manifest objects and other
client-specific information also need to be ingested and updated, and segments may be deleted.

Combining the two interfaces can be considered in many cases. An example of this is given at the
end of the document in § 8 Examples (Informative).

Table 1 highlights some of the key differences and practical considerations of the interfaces. In
Interface-1, the ingest source can be simple since the receiving entity can do many of the operations
related to the delivery such as encryption or generating the streaming manifests. In addition, the
distribution of functionalities can make it easier to scale a deployment with concurrent (redundant)
live media sources and receiving entities. Besides these factors, choosing a workflow for a video
streaming platform depends on many other factors.

Table 1: Different ingest use cases.

Interface Ingest source Receiving entity

CMAF Ingest Limited overview, simpler
encoder, multiple sources

Re-encryption, transcoding,
stitching, watermarking,
packaging

DASH/HLS Ingest Global overview, targets
duplicate presentations, limited
flexibility, no redundancy

Manifest manipulation,
transmission, storage

Figure 3: Workflow with redundant ingest sources and receiving entities.

Finally, Figure 3 highlights another aspect that was taken into consideration for large-scale systems
with many users. Often content owners would like to run multiple ingest sources, multiple receiving
entities and make them available to the clients in a seamless fashion. This approach is already
common when serving web pages, and this architecture also applies to media streaming over HTTP.
In Figure 3, it is highlighted how one or more ingest sources can be sending data to one or more
receiving entities. In such a workflow, it is important to handle the case when one ingest source or
receiving entity fails and synchronization. Both the system and client behavior are an important
consideration in systems that need to run 24/7. Failovers must be handled robustly and without
causing service interruption. This specification details how this failover and redundancy support can
be achieved and provides recommendations for dual encoder synchronisation.

The media ingest follows the following common requirements for both interfaces.

5. Common Requirements for Interface-1 and Interface-2§

5.1. Ingest Source Identification§

The ingest source SHOULD include a User-Agent header (which provides information about
brand name, version number and build number in a readable format) in all allowed HTTP
messages. The receiving entity can log the received information along with other relevant HTTP
header data to facilitate troubleshooting. The version number of the current version is DASH-IF-
Ingest 1.1, thus header name may be DASH-IF-Ingest and value may be 1.1

5.2. General Requirements§

1. The ingest source SHALL communicate using the HTTP POST or HTTP PUT as defined in the
HTTP protocol, version 1.1 [rfc9112].

NOTE: This specification does not imply any functional differentiation between a POST and
PUT command. Either may be used to transfer content to the receiving entity. Unless
indicated otherwise, the use of the term POST can be interpreted as POST or PUT.

2. The ingest source SHOULD use HTTP over TLS, if TLS is used it SHALL support at least TLS
version 1.2, a higher version may also be supported additionally [rfc9110].

3. The ingest source SHOULD use a domain name system for resolving hostnames to IP addresses
such as DNS [RFC1035] or any other system that is in place. If this is not the case, the domain
name<->IP address mapping(s) MUST be known and static.

4. In the case of 3, ingest source MUST update the IP to hostname resolution respecting the TTL
(time-to-live) from DNS query responses. This enables better resilience to IP address changes in
large-scale deployments where the IP address of the media processing entities may change
frequently.

5. In case HTTP over TLS [rfc9110] is used, at least one of the basic authentication HTTP AUTH
[RFC7617], TLS client certificates or HTTP Digest authentication [RFC7616] MUST be supported.

6. Mutual authentication SHALL be supported. TLS client certificates SHALL chain to a trusted CA
or be self-signed. Self-signed certificates MAY be used, for example, when the ingest source and
receiving entity fall under the same administration.

7. As compatibility profile for the TLS encryption, the ingest source SHOULD support the Mozilla’s
intermediate compatibility profile [Mozilla-TLS].

8. In case of an authentication error confirmed by an HTTP 403 response, the ingest source SHALL
retry to establish the connection within a fixed time period with updated authentication
credentials. When that also results in error, the ingest source can retry N times, after which the
ingest source SHOULD stop and log an error. The number of retries N can be configurable in the
ingest source.

9. The ingest source SHOULD terminate the HTTP POST or HTTP PUT request if data is not being
sent at a rate commensurate with the MP4 fragment duration. An HTTP POST or HTTP PUT

command that does not send data can prevent the receiving entity from quickly disconnecting
from the ingest source in the event of a service update.

10. The HTTP request for sparse data SHOULD be short-lived, terminating as soon as the data of a
fragment is sent.

11. The HTTP request uses the publishing_point_URL at the receiving entity and SHOULD use an
additional relative path when posting different streams and fragments, for example, to signal
the stream or fragment name.

12. Both the ingest source and receiving entity MUST support IPv4 and IPv6 transport.

13. The ingest source and receiving entity SHOULD support gzip based content encoding.

14. The response from the receiving entity may, in addition to response code, return information in
the response body, such as relating to the transfer time, size etc. of the last HTTP request,
especially in case this request was in HTTP chunked transfer mode. But no specific response
format is defined at this time, but this may be considered in future revisions. NOTE: More
specific response body formatting may be defined in future revisions, input from implementors
is welcome.

15. The ingest source MUST support the configuration and use of Fully Qualified Domain Names
(per RFC 8499) to identify the receiving entity.

16. The ingest source MUST support the configuration of the path, which it will POST all the objects
to.

17. The ingest source SHOULD support the configuration of the delivery path that the receiving
entity will use to retrieve the content. When provided, the ingest source MUST use this path to
build absolute URLs in the manifest files it generates. When absent, use of relative paths is
assumed and the ingest source MUST build the manifest files accordingly.

18. The ingest source MUST transfer media objects and manifest objects to the receiving entity via
individual HTTP/1.1 POST commands to the configured path.

19. To avoid delay associated with the TCP handshake, the ingest source SHOULD use persistent
TCP connections.

20. To avoid head of line blocking, the ingest source SHOULD use multiple parallel TCP connections
to transfer the streaming presentation that it is generating. For example, the ingest source
SHOULD POST each representation (e.g., CMAF track) in a media presentation over a different
TCP connection.

21. The ingest source SHOULD use the chunked transfer encoding option for the HTTP requests
when the content length of the request is unknown at the start of transmission or to support
the low-latency use cases.

5.3. Failure Behaviors§

1. The ingest source SHOULD use a timeout in the order of a segment duration (e.g., 1-6 seconds)
for establishing the TCP connection. If an attempt to establish the connection takes longer than

The interfaces described in this document (clauses § 6 Interface-1: CMAF Ingest and § 7 Interface-2:
DASH and HLS Ingest) are identified with the following identifier:

Identifer Reference Sections Comments

http://dashif.org/ingest/v1.2 http://dashif.org/ingest/v1.2 Clause § 6
Interface-
1: CMAF
Ingest and

Conforming to
the
requirements

the timeout, the ingest source aborts the operation and tries again.

2. The ingest source SHOULD resend the objects for which a connection was terminated early or
when an HTTP 400 or 403 error response was received if the connection was down for less than
three average segments durations. For connections that were down longer, the ingest source
can resume sending objects at the live edge of the media presentation.

3. After a TCP error, the ingest source performs the following:

3a. The current connection MUST be closed and a new connection MUST be created for a new
HTTP POST or HTTP PUT request.

3b. The new HTTP POST_URL MUST be the same as the initial POST_URL for the object to be
ingested.

4. In case the receiving entity cannot process the HTTP request due to authentication or
permission problems, or incorrect path, it SHALL return an HTTP 403 Forbidden error.

5. The following error conditions apply to the receiving entity:

5a. If the publishing_point_URL receiving the HTTP request is not available, it SHOULD return an
HTTP 404 Not Found error to the ingest source.

5b. If the receiving entity can process a fragment in the HTTP request body but finds the media
type is not supported, it may return an HTTP 415 Unsupported Media Type error.

5c. If the receiving entity cannot process a fragment in the POST request body due to missing or
incorrect initialization fragment, it may return an HTTP 412 Precondition Failed error.

5d. If there is an error at the receiving entity not particularly relating to the request from the
ingest source, it may return an appropriate HTTP 5xx error.

5e. In all other scenarios, the receiving entity MUST return an HTTP 400 Bad Request error.

6. The ingest source SHOULD support the handling of HTTP 30x redirect responses from the
receiving entity.

5.4. Identifier§

§ 7
Interface-
2: DASH
and HLS
Ingest

of this
document

The above identifier may be used by an entity to signal the support of interfaces defined in clause
§ 6 Interface-1: CMAF Ingest and § 7 Interface-2: DASH and HLS Ingest.

This section describes the protocol behavior specific to Interface-1. Operation of this interface MUST
also adhere to the common requirements given in § 5 Common Requirements for Interface-1 and
Interface-2.

The media format is conforming to the track constraints specified in [MPEGCMAF] clause 7. Note
that no CMAF media profile is needed by this specification unless stated otherwise; only the
structural format based on [MPEGCMAF] clause 7 is used. Supporting CMAF media profiles is
optional.

CMAF Ingest can also be used for simple transport of media to an archive, as the combination of
CMAF header and CMAF fragments will result in a valid archived CMAF track file when an ingest is
stored on disk by the receiving entity.

CMAF Ingest improves over Smooth Streaming’s ingest protocol [MS-SSTR] by only using
standardized media container formats and boxes based on [ISOBMFF] and [MPEGCMAF] instead of
specific UUID boxes.

Many new technologies like MPEG HEVC, AV1, HDR have CMAF bindings. Using CMAF will make it
easier to adopt such technologies.

Some discussions on the early development of the specification have been documented in [fmp4git].

Figure 4: CMAF Ingest with multiple ingest sources.

6. Interface-1: CMAF Ingest§

6.1. General Considerations (Informative)§

Figures 5-7 detail some of the concepts and structures defined in [MPEGCMAF]. Figure 5 shows the
data format structure of the CMAF track. In this format, media samples and media indexes are
interleaved. The MovieFragmentBox "moof" box as specified in [ISOBMFF] is used to signal the
information to playback and decode properties of the samples stored in the "mdat" box. The CMAF
header contains the track specific information and is referred to as a CMAF header in [MPEGCMAF].
The combination of "moof" and "mdat" can be referred as a CMAF fragment or CMAF chunk
depending on the structure content and the number of moof-mdat pairs in the addressable object.

Figure 5: CMAF track stream.

Figure 6 illustrates the presentation timing model, defined in [MPEGCMAF] clause 6.6. Different bit-
rate tracks and/or media streams are conveyed in separate CMAF tracks. By having fragment
boundaries time aligned for tracks and applying constraints on tracks, seamless switching can be
achieved. By using a common timeline different streams can be synchronized at the receiver, while
they are in a separate CMAF track, sent over a separate connection, possibly from a different ingest
source.

For more information on the synchronization model, we refer the readers to Section 6 of
[MPEGCMAF]. For synchronization of tracks coming from different encoders, sample-time accuracy
is required, i.e., the samples with identical timestamp contain identical content.

In Figure 7, another advantage of this synchronization model is illustrated, which is the concept of
late binding. In the case of late binding, streams are combined on playout/streaming in a
presentation (see Section 7.3.6 of [MPEGCMAF]).

Figure 6: CMAF track synchronization.

Figure 7: CMAF late binding.

Figure 8 shows the flow diagram of the protocol. It starts with a DNS resolution (if needed) and an
authentication step (using two-factor authentication, TLS certificates or HTTP Digest Authentication)

NOTE: As defined in [MPEGCMAF], different CMAF tracks have the same starting time sharing
an implicit timeline. A stream becoming available from a different source needs to be
synchronized and time-aligned with other streams.

to establish a secure TCP connection.

In private datacenter deployments where nodes are not reachable from outside, a non-
authenticated connection may also be used. The ingest source then issues an HTTP POST or HTTP
PUT request to test that the receiving entity is listening. This request include the CMAF header or
could be empty. In case the test is successful, it is followed by the CMAF header and fragments
composing the CMAFstream. At the end of the session, the source may send an empty mfra
(deprecated) box or a segment with the lmsg brand. Then, the ingest source can follow up by closing
the TCP connection using a TCP FIN packet.

Figure 8: CMAF Ingest flow.

The ingest source transmits media content to the receiving entity using HTTP POST or PUT. The
receiving entity listens for content at the publishing_point_URL that is known by both the ingest
source and receiving entity. The POST_URL may contain an extended path to identify the stream
name, switching set or fragment may be added by the ingest source. It is assumed that the ingest
source can retrieve these paths and use them.

In Interface-1, the container format is based on CMAF, conforming to the track constraints specified
in [MPEGCMAF] clause 7. Unless stated otherwise, no conformance to a specific CMAF media profile
is REQUIRED.

NOTE: If the HTTP POST is using the chunked transfer encoding option, the ingest source sends
a zero-length terminating chunk per [rfc9112] after sending the lmsg brand letting the receiving
entity know that the POST command has been concluded.

6.2. General Protocol, Manifest and Track Format Requirements§

1. The ingest source SHALL start by an HTTP POST or HTTP PUT request with the CMAF header, or
an empty request, to the POST_URL. This can help the ingest source quickly detect whether the
publishing_point_URL is valid, and if there are any authentication or other conditions required.

2. The ingest source MUST initiate a media ingest connection by posting at least one CMAF header
after step 1 for each track. Before doing so, it SHOULD post a DASH manifest with a file name
extension .mpd to the publishing_point_URL without an additional relative path but the
manifest filename and in addition following clause 16 of this section. If not the case, the
grouping of the CMAF tracks is trivial and the Streams() keyword is used to identify CMAF tracks.

3. The ingest source SHALL transmit one or more CMAF segments composing the track to the
receiving entity once they become available. In this case, a single HTTP POST or PUT request
message body MUST contain one CMAF segment.

4. The ingest source MAY use the chunked transfer encoding option of the HTTP POST command
[rfc9112] when the content length is unknown at the start of transmission or to support use
cases that require low latency.

5. If the HTTP request terminates or times out with a TCP error, the ingest source MUST establish a
new connection and follow the preceding requirements. Additionally, the ingest source MAY
resend the segment in which the timeout or TCP error occurred.

6. The ingest source MUST handle any error responses received from the receiving entity, as
described in general requirements, and by retransmitting the CMAF header.

7. (deprecated) In case the live stream session is over the ingest source MAY signal the stop by
transmitting an empty mfra (deprecated) box towards the receiving entity. After that it SHALL
send an empty HTTP chunk and wait for the HTTP response before closing TCP connection.

8. The ingest source SHOULD use a separate parallel TCP connection for ingest of each different
CMAF track.

9. The ingest source MAY use a separate relative path in the POST_URL for ingesting each different
track or track segment by appending it to the POST_URL. This makes it easy to detect redundant
streams from different ingest sources. Specific naming convention of the segments and paths
can be derived from the MPEG-DASH manifest, SegmentTemplate@media and @initialization. If
not, the Streams(stream_name) keyword (deprecated) shall be used to signal the name of the
cmaf track representation.

10. The baseMediaDecodeTime timestamps in "tfdt" of fragments in the CMAFstream SHOULD
arrive in increasing order for each of the fragments in the different tracks/streams that are
ingested.

11. The fragment sequence numbers in the CMAFstream signaled in the "mfhd" box SHOULD arrive
in increasing order for each of the different tracks/streams that are ingested. Using both
baseMediaDecodeTime and sequence number based indexing helps the receiving entities
identify discontinuities. In this case sequence numbers SHOULD increase by one.

12. The average and maximum bitrate of each track SHOULD be signaled in the "btrt" box in the
sample entry of the CMAF header. These can be used to signal the bitrate later on, such as in
the manifest.

13. In case a track is part of a switching set, all properties in Sections 6.4 and 7.3.4 of [MPEGCMAF]
MUST be satisfied, enabling the receiver to group the tracks in the respective switching sets.

14. Ingested tracks MUST conform to CMAF track structure defined in [MPEGCMAF]. Additional
constraints on the CMAF track structure are defined in later sections for specific media types.

15. CMAF tracks MAY use SegmentTypeBox to signal brands like chunk, fragment or segment. Such
signaling may also be inserted in a later stage by the receiving entity.

16. The MPEG-DASH manifest shall use SegmentTemplate in each AdaptationSet (or in each
contained Representation).

a. The SegmentTemplate@initiatization in the MPEG-DASH manifest shall contain the single
substring $RepresentationID$ and the SegmentTempate@media shall contain the single

substring $RepresentationID$ and the substring $Number$ or $Time$ (not both). For best
interoperability, a separator character should be between representation substrings that is
not an integer, this is especially important in case the $RepresentationID$ substitution ends
with a number character.

b. SegmentTemplate@media shall be identical for each SegmentTemplate Element in the
MPEG-DASH manifest.

c. SegmentTemplate@initialization shall be identical for each SegmentTemplate Element in
the MPEG-DASH manifest.

d. The BaseURL element shall be absent.

e. The AvailabilityStartTime SHOULD be set to 1970-01-01T00:00:00Z (Unix epoch) and the
period @start to PT0S (if this is not the case it may be more difficult to synchronize more
than one ingest source).

f. Each Representation in the MPEG-DASH manifest represents a CMAF track, each
AdaptationSet in the MPD represents a CMAF SwitchingSet.

g. In case an ingest source issues an HTTP Request with an updated MPEG-DASH manifest,
identical naming conventions apply. A receiver may ignore such updated MPD send by an
ingest source.

h. The MPEG-DASH manifest shall contain a single Period Element.

17. The Ingest source may send an HTTP Live Streaming manifest, but its structure and naming
shall be derived from or matching the MPEG-DASH manifest described in clause 16 above. In
particular:

a. In a master playlist, the groupings identified represent CMAF Switching sets For media
playlists named X.m3u8, X shall match the name of the corresponding Representation@id.

b. The segment URI announced in media playlists shall follow a structure that can be
derived using the SegmentTemplate@media from the MPEG-DASH manifest.

c. The EXT-X-MAP URI attribute in media playlists shall follow a naming structure that can be
derived using a SegmentTemplate@initialization from the MPEG-DASH manifest.

d. A receiver may ignore EXT-X-DATE-RANGE tags in the manifest, timed metadata shall be
caried as described in the section on timed metadata § 6.6 Requirements for Timed
Metadata Tracks.

e. A receiver may ignore updated HTTP Live Streaming manifests.

18. In case the ingest source loses its own input or input is absent, it SHALL insert filler or
replacement content, and output these as valid CMAF segments. Examples may be black
frames, silent audio, or empty timed text segments. Such segments SHOULD be labelled by
using a SegmentTypeBox ("styp") with the slat brand. This allows a receiver to still replace those
segments with valid content segments at a later time.

19. The last segment in a CMAF track, SHOULD be labelled with a SegmentTypeBox ("styp") with the
lmsg brand. This way, the receiver knows that no more media segments are expected for this

[MPEGCMAF] has the notion of CMAF track, which are composed of CMAF fragment and CMAF
chunks. A fragment can be composed of one or more chunks. The media fragment defined in
ISOBMFF predates the definition in CMAF. It is assumed that the ingest source uses HTTP POST or
HTTP PUT requests to transmit CMAF fragment(s) to the receiving entity. The following are additional
requirements imposed to the formatting of CMAF media tracks.

track. In case the track is restarted, a request with a CMAF header with (identical properties)
must be issued to the same POST_URL.

20. CMAF segments may include one or more DASHEventMessageBox’es ("emsg") containing timed
metadata.

NOTE: According to [MPEGDASH], all DASHEventMessageBox’es ("emsg") must have a
presentation_time later as compared to the segment’s earliest presentation time. This can
make re-signaling of continuation events (events that are still active) troublesome (this is
fixed in MPEG-DASH 5th edition).

NOTE: Including DASHEventMessageBox’es ("emsg") boxes in media segments may result
in a loss of performance for just-in-time (re-)packaging. In this case, timed metadata § 6.6
Requirements for Timed Metadata Tracks should be considered.

21. CMAF media (audio and video) tracks SHALL include the ProducerReferenceTimeBox’es ("prft")
in the ingest. In these media tracks, all segments SHALL include a "prft" box. The "prft" box
permits the end client to compute the end-to-end latency or the encoding plus distribution
latency.

22. In case the input to the ingest source is MPEG-2 TS based, the ingest source is responsible for
converting the presentation timestamps and program clock reference (PCR) to a timeline
suitable for [MPEGDASH] and [ISOBMFF] with the correct anchor and timescales. The
RECOMMENDED timescales and anchors are provided in next sections for each track type. For
dual-encoder synchronization, it is also RECOMMENDED to use the Unix epoch or another
similar well known time anchor (e.g. 2:14 a.m., EDT, on August 29, 1997, the time sky-net
became self-aware is sometimes used).

23. In case a receiving entity cannot process a request from an ingest source correctly, it can send
an HTTP error code. See § 6.8 Requirements for Failovers and Connection Error Handling or § 5
Common Requirements for Interface-1 and Interface-2 for details.

6.3. Requirements for Formatting Media Tracks§

1. Media tracks SHALL be formatted using boxes according to Section 7 of [MPEGCMAF]. Media
track SHOULD not use media-level encryption (e.g., common encryption), as HTTP over TLS
(HTTPS) should provide sufficient transport layer security. However, in case common encryption
is used, the decryption key shall be made available out of band by supported means such as
CPIX defined by DASH-IF.

In live streaming, a CMAF presentation of streams corresponding to a channel is ingested by posting
to a publishing_point_URL at the receiving entity. CMAF has the notion of switching sets
[MPEGCMAF] that map to similar streaming protocol concepts like Adaptation Set in DASH. To signal
a switching set in a CMAF presentation, CMAF media tracks MUST correspond to the constraints
defined in [MPEGCMAF] clause 7.3.4.

In addition, optional explicit signaling is defined in this clause. This would mean the following steps
could be implemented by the live ingest source.

2. The CMAF fragment durations SHOULD be constant; the duration MAY fluctuate to compensate
for non-integer frame rates. By choosing an appropriate timescale (a multiple of the frame rate
is recommended) this issue should be avoided. A last fragment of a track may have a different
duration.

3. The CMAF fragment durations SHOULD be between approximately one and six seconds.

4. Media tracks SHOULD use a timescale for video streams based on the framerate and 44.1 KHz
or 48 KHz for audio streams or any another timescale that enables integer increments of the
decode times of fragments signaled in the "tfdt" box based on this scale. If necessary, integer
multiples of these timescales could be used.

5. The language of the CMAF track SHOULD be signaled in the "mdhd" box or "elng" boxes in the
CMAF header.

6. Media tracks SHOULD contain the ("btrt") box specifying the target average and maximum
bitrate of the CMAF fragments in the sample entry container in the CMAF header.

7. Media tracks MAY be composed of CMAF chunks [MPEGCMAF] clause 7.3.2.3. In this case, they
SHOULD be signaled using SegmentTypeBox ("styp") to make it easy for the receiving entity to
differentiate them from CMAF fragments. The brand type of a chunk is cmfl. CMAF chunks
should only be signaled if they are not the first chunk in a CMAF fragment.

8. In video tracks, profiles like avc1 and hvc1 MAY be used that signal the sequence parameter set
in the CMAF header. In this case, these codec parameters do not change dynamically during the
live session in the media track.

9. However, video tracks SHOULD use profiles like avc3 or hev1 that signal the parameter sets
(PPS, SPS, VPS) in in the media samples. This allows inband signaling of parameter changes. This
is because in live content, codec configuration may change slightly over time.

10. In case the language of a track changes, a new CMAF header with updated "mdhd" and/or "elng"
SHOULD be present. The CMAF header MUST be identical, except the "elng" tag.

11. Track roles SHOULD be signaled in the ingest by using a "kind" box in UserDataBox ("udta"). The
"kind" box MUST contain a schemeURI urn:mpeg:dash:role:2011 and a value containing a Role
as defined in [MPEGDASH]. In case this signaling does not occur, the processing entity can
define the role for the track independently.

6.4. Requirements for Signaling Switching Sets§

Table 2: Switching set signaling options.

Signaling option Requirement

Implicit signaling based on switching set constraints
[MPEGCMAF] clause 7.3.4.

Mandatory

Signaling using switching set ID in the POST_URL using
Switching() keyword (only when not MPD and Streams() is used)

Optional

Signaling using DASH AdaptationSet and defined naming
structure based on SegmentTemplate and SegmentTimeline

Optional

Signaling using HTTP Live Streaming master playlist Optional

Signaling using switching set ID in the track using "kind" box
with schemeURI urn:dashif:ingest:switchingset_id and value set
to switching set ID

Optional

1. A live ingest source MAY generate a switching set ID that is unique for each switching set in a
live stream session. Tracks with the same switching set ID belong to the same switching set. The
switching set ID can be a string or (small) integer number. Characters in switching set ID SHALL
be unreserved, i.e., A-Za-z0-9_.-~ in order to avoid introducing delimiters.

2. The switching set ID may be added in a relative path to the POST_URL using the Switching()
keyword. In this case, a CMAF segment is sent from the live ingest source as POST chunk.cmfv
POST_URL/Switching(switching set ID)/Streams(stream_id) (deprecated not commonly
supported). This option is only recommended when Streams() keyword is used and the option
to signal switchingsets in the MPD is not used.

3. The live ingest source MAY add a "kind" box in the "udta" box in each track to signal the
switching set it belongs to. The schemeURI of this "kind" box SHALL be
urn:dashif:ingest:switchingset_id and the value field of the "kind" box SHALL be the switching set
ID.

4. The switching sets are grouped as adaptation sets present in the DASH manifest in a POST
request issued earlier, i.e., before the segments of that switching set are transmitted. In this
case, the naming of the segment URIs follows the naming defined in the DASH manifest based
on a SegmentTemplate elements. In this case the SwitchingSet ID corresponds to the
AdaptationSet @id attribute

5. SwitchingSet grouping may be derived from the HTTP Live Streaming master playlist.

The live media ingest specification follows requirements for ingesting a track with timed text,
captions and/or subtitle streams. The recommendations for formatting subtitle and timed text
tracks are defined in [MPEGCMAF] and [MPEG4-30].

We provide additional guidelines and best practices for formatting timed text and subtitle tracks.

An informative scheme of defined roles in DASH and respective corresponding roles in HLS can be
found below, additionally the forced subtitle in HLS might be derived from a DASH forced subtitle
role as well by a receiving entity.

Table 3: Roles for subtitle and audio tracks and HLS characteristics.

HLS characteristic urn:mpeg:dash:role:2011

transcribes-spoken-dialog subtitle

easy-to-read easyreader

describes-video description

6.5. Requirements for Timed Text, Captions and Subtitle Tracks§

1. CMAF tracks carrying WebVTT signaled by the cwvt brand or TTML Text signaled by the im1t
brand are preferred. [MPEG4-30] defines the track format selected in [MPEGCMAF].

2. Based on this [ISOBMFF], the trackhandler "hdlr" SHALL be set to "text" for WebVTT and "subt"
for TTML.

3. The "ftyp" box in the CMAF header for the track containing timed text, images, captions and
subtitles MAY use signaling using CMAF profiles based on [MPEGCMAF]:

4. The BitRateBox ("btrt") SHOULD be used to signal the average and maximum bitrate in the
sample entry box, this is most relevant for bitmap or XML based timed text subtitles that may
consume significant bandwidth (e.g., im1i or im1t).

5. In case the language of a track changes, a new CMAF header with updated "mdhd" and/or "elng"
SHOULD be sent from the ingest source to the receiving entity.

6. Track roles can be signaled in the ingest, by using a "kind" box in the "udta" box. The "kind" box
MUST contain a schemeURI urn:mpeg:dash:role:2011 and a value containing a role as defined in
[MPEGDASH].

NOTE: [MPEGCMAF] allows multiple "kind" boxes, hence, multiple roles can be signaled. By
default, one should signal the DASH role urn:mpeg:dash:role:2011. A receiver may derive
corresponding configuration for other streaming protocols such as HLS. In case this is not
desired, additional "kind" boxes with corresponding schemeURI and values can be used to
explicitly signal this information for other protocol schemes.

describes-music-and-sound caption

DASH roles are defined in urn:mpeg:dash:role:2011 [MPEGDASH]. Another example for explicitly
signaling roles could be DVB DASH [DVB-DASH]:

This section discusses the specific formatting requirements for CMAF Ingest of timed metadata.
Examples of timed metadata are opportunities for splice points and program information signaled
by SCTE-35 markers. Such event signaling is different from regular audio/video information because
of its sparse nature. In this case, the signaling data usually does not happen continuously and the
intervals may be hard to predict. Other examples of timed metadata are ID3 tags [ID3v2], SCTE-35
markers [SCTE35] and DASHEventMessageBox’es defined in Section 5.9.8.3 of [MPEGDASH].

Table 4 provides some example urn schemes to be signaled. Table 5 illustrates an example of a
SCTE-35 marker stored in a DASHEventMessageBox that is in turn stored as a metadata sample in a
metadata track. The presented approach enables ingest of timed metadata from different sources,
because data is not interleaved with the media.

By using CMAF timed metadata tack, the same track and presentation formatting are applied for
metadata as for other tracks ingested, and the metadata is part of the CMAF presentation.

By embedding the DASHEventMessageBox structure in timed metadata samples, some of the
benefits of its usages in DASH and CMAF are kept. In addition, it enables signaling of gaps,
overlapping events and multiple events starting at the same time in a single timed metadata track
for this scheme. In addition, the parsing and processing of DASHEventMessageBox’es is supported
in many players. The support for this DASHEventMessageBox embedded timed metadata track
instantiation is described.

An example of adding an ID3 tag in a DASHEventMessageBox can be found in [aomid3].

Table 4: Example URN schemes for timed metadata tracks.

URI Reference

urn:mpeg:dash:event:2012 [MPEGDASH]

urn:dvb:iptv:cpm:2014 [DVB-DASH]

urn:scte:scte35:2013:bin [SCTE214-3]

EXAMPLE 1
kind.schemeURI="urn:tva:metadata:cs:AudioPurposeCS:2007@1" kind.value="Alternate"

¶

6.6. Requirements for Timed Metadata Tracks§

www.nielsen.com:id3:v1 Nielsen ID3 in DASH [ID3v2]

Table 5: Example of a SCTE-35 marker embedded in a DASH EventMessageBox.

Tag Value

scheme_id_uri urn:scte:scte35:2013:bin

value value used to signal subscheme

timescale positive number, ticks per second, similar to
track timescale

presentation_time_delta non-negative number

event_duration duration of event "0xFFFFFFFF" if unknown

id unique identifier for message

message_data splice info section including CRC

The following are requirements and recommendations that apply to the timed metadata ingest of
information related to events, tags, ad markers and program information and others:

1. Timed Metadata SHALL be conveyed in a CMAF track, where the media handler (hdlr) is "meta",
the track handler box is a NullMediaHeaderBox ("nmhd") as defined for timed metadata tracks
in [ISOBMFF] clause 12.3.

2. The CMAF timed metadata track applies to the CMAF presentation ingested to a
publishing_point_URL at the receiving entity.

3. To fulfill CMAF track requirements in [MPEGCMAF] clause 7.3., such as not having gaps in the
media timeline, filler data may be needed. Such filler data SHALL be defined by the metadata
scheme signaled in URIMetaSampleEntry. For example, WebVTT tracks define a
VTTEmptyCueBox in [MPEG4-30] clause 6.6. This cue is to be carried in samples in which no
active cue occurs. Other schemes could define empty fillers amongst similar lines, such as the
EventMessageEmptyBox (emeb) in ISO/IEC 23001-18.

4. CMAF track files do not support overlapping, multiple concurrently active or zero duration
samples. In case metadata or events are concurrent, overlapping or of zero duration, such
semantics MUST be defined by the scheme signaled in the URIMetaSampleEntry. The timed
metadata track MUST still conform to [MPEGCMAF] clause 7.3.

5. CMAF timed metadata tracks MAY carry DASH Events as defined in [MPEGDASH] clause 5.9.8.3
in the metadata samples. The best way to create such a track is based on ISO/IEC 23001-18.
Some older implementations may use DASHEventMessageBox’es as defined in ISO/IEC 23009-1.
Using DASHEventMessageBox’es directly in samples may be implemented as follows:

5a. Version 1 SHOULD be used. In case version 0 is used, the presentation_time_delta refers to
presentation time of the sample enclosing the DASHEventMessageBox.

5b. The URIMetaSampleEntry SHOULD contain the URN "urn:mpeg:dash:event:2012" or an
equivalent URN to signal the presence of DASHEventMessageBox’es.

5c. The timescale of the DASHEventMessageBox SHALL match the value specified in the
MediaHeaderBox ("mdhd") of the timed metadata track.

5d. The sample SHOULD contain all DASHEventMessageBox’es that are active in during the
presentation time of the sample.

5e. A single metadata sample MAY contain multiple DASHEventMessageBox’es. This happens if
multiple DASHEventMessageBox’es have the same presentation time or if an earlier event is still
active in a sample containing a newly started and overlapping event.

5f. The scheme_id_uri in the DASHEventMessageBox can be used to signal the scheme of the
data carried in the message data field. This enables carriage of multiple metadata schemes in a
track.

5g. For SCTE-35 ingest, the scheme_id_uri in the DASHEventMessageBox MUST be
"urn:scte:scte35:2013:bin" as defined in [SCTE214-3]. A binary SCTE-35 payload is carried in the
message_data field of a DASHEventMessageBox. If a splice point is signaled, media tracks MUST
insert an IDR sample at the time corresponding to the event presentation time.

5h. It may be necessary to add filler samples to avoid gaps in the CMAF track timeline. This may
be done using EventMessageEmptyBox (8 bytes) with 4cc code of "emeb" defined in ISO/IEC
23001-18.

5i. If ID3 tags are carried, the DASHEventMessageBox MUST be formatted as defined in
[aomid3].

5j. The value and id field of the DASHEventMessageBox can be used by the receiving entity to
detect duplicate events.

6. The ingest source SHOULD NOT embed inband top-level DASHEventMessageBox’es ("emsg") in
the timed metadata track.

7. Timed metadata tracks, similar to other CMAF tracks, SHOULD use a constant segment
duration. As actual timed metadata durations may vary in practice, timed metadata schemes
should support schemes for re-signaling all active timed metadata in each sample. This way,
constant duration segments (e.g., two-second segments) can still be used and metadata that is
still active can be repeated in later segments. ISO/IEC 23001-18 has explicit support for this
feature by repeating the event message instance boxes in subsequent samples.

8. A change in the set of active events shall trigger a sample boundary in the timed medata track.

9. In case the timed metadata track is also signaled in the manifest, the @codecs string should be
set to the 4cc code of the sample entry, e.g., "urim" for URIMetaSampleEntry or "evte" for

Splicing is important for use cases like ad insertion or clipping of content. The requirements for
signaling splice points and content conditioning at respective splice points are as follows.

The conditioning follows [DASH-IFad] shown in Figure 9:

Figure 9: Splice point conditioning

ISO/IEC 23001-18. The contentType field should be set to "meta" and mimeType field to
"application/mp4". Additional supplemental or Essential property descriptors may be used to
further describe the content of the metadata track in the manifest.

6.7. Requirements for Signaling and Conditioning Splice Points§

1. The preferred method for signaling splice point uses the timed metadata track sample with a
presentation time corresponding to the splice point. The timed metadata track sample is
carrying events carrying binary SCTE-35 based on the scheme urn:scte:scte35:2013:bin as
defined in [SCTE214-3]. The command carried in the binary SCTE-35 SHALL carry a splice info
section with spliceInsert command with out of network indicator set to 1 and a break_duration
matching the actual break duration.

2. Information related to splicing, whether SCTE-35 based or by other means, whether in an
EventMessageBox or timed metadata track sample or event MUST be available to the receiver at
least four seconds before the media segment with the intended splice point.

3. The splice time SHALL equal the presentation time of the metadata sample or event message,
as the SCTE-35 timing is based on MPEG-2 TS and has no meaning in CMAF or DASH. The media
ingest source is responsible for the frame accurate conversion of this time similar to for the
media segments.

4. In case a separate SCTE-35 command is used with out_of_network_indicator=0, the actual
duration of the break SHALL match the announced break duration in the SCTE-35 command
iwth out_of_network_indicator=1 in the earlier SCTE-35 splice_insert command.

5. In case segmentation descriptors are used and multiple descriptors are present, a separate
event message with a duration corresponding to each of the descriptors SHOULD be used.

The splice point conditioning in [DASH-IFad] are defined as follows:

This specification requires option 1 or 2 to be applied. Option 2 is required for dual-encoder
synchronization to avoid variation of the segment durations.

Given the nature of live streaming, good failover support is critical for ensuring the availability of the
service. Typically, media services are designed to handle various types of failures, including network
errors, server errors, and storage issues. When used in conjunction with proper failover logic from
the ingest source side, highly reliable live streaming setups can be built. In this section, we discuss
requirements for failover scenarios.

When the receiving entity fails:

When the ingest source fails:

1. Option 1 (splice conditioned packaging): Both a fragment boundary and a SAP 1 or SAP 2
(stream access point) at the splice point.

2. Option 2 (splice conditioned encoding): A SAP 1 or SAP 2 stream access point at the frame at the
boundary.

3. Option 3 (splice point signaling): No specific content conditioning at the splice point.

6.8. Requirements for Failovers and Connection Error Handling§

A new instance SHOULD be created listening to the same publishing_point_URL for the ingest
stream.

1. A new instance SHOULD be instantiated to continue the ingest for the live streaming session.

2. The new instance MUST use the same URL’s for HTTP requests as the failed instance for
segments.

In the case of more than one redundant ingest sources, synchronization between them can be
achieved as follows. A fixed segment duration is chosen such as based on the fixed GoP duration,
e.g., two seconds that is used by all ingest sources and CMF tracks. So the CMAF segment duration is
fixed for all CMAF tracks (not only the video tracks). The CMAF tracks use a fixed anchor T as a
timeline origin, this should be 1-1-1970 (Unix epoch) or another well-known defined time anchor.
The segment boundaries in this case are K * segment duration (since anchor T) for an integer K > 0.
Any media source joining or starting can compute the fragment boundary and produce segments
with equivalent segment boundaries corresponding to approximately the current time by choosing
K sufficiently large.

It is assumed that media sources generate signals from a synchronized input source and can use
timing information from this source, e.g., MPEG-2 TS presentation time stamp or SDI signals to
compute such timestamps for each segment. For example, in the case of MPEG-2 TS program clock
reference (PCR) and presentation timestamps can be used. Based on this conversion, different
media sources will produce segments with identical durations, per frame timestamps and enclosing
frames. By this conversion to a common timeline based on a common anchor (in this case the Unix
epoch) and fixed segment durations, ingest sources can join and leave the synchronized operation,
enabling both synchronization and redundancy. Each time a source join it can compute based on
the anchor, fixed segment duration and current Time a suitable value for K and the CMAF base
media decode times.

In this setup, a first ingest source can be seamlessly replaced by a redundant second ingest source.
In case of splicing, it is important that the ingest source inserts an IDR frame but not a segment or
fragment boundary.

3. The new instance’s POST request MUST include the same CMAF header or CMAF header as the
failed instance.

4. The new instance MUST be properly synced with all other running ingest sources for the same
live presentation to generate synced audio/video samples with aligned fragment boundaries in
the track. This implies that timestamps in the "tfdt" baseMediaDecodeTime box match.

5. The new stream MUST be semantically equivalent with the previous stream, and
interchangeable at the header and media fragment levels.

6. The new instance SHOULD try to minimize data loss. The baseMediaDecodeTime of fragments
SHOULD increase from the point where the encoder last stopped. The baseMediaDecodeTime
in the "tfdt" box SHOULD increase in a continuous manner, but it is permissible to introduce a
discontinuity, if necessary. A receiving entity can ignore fragments that it has already received
and processed, so it is better to err on the side of resending fragments than to introduce
discontinuities in the media timeline.

7. In some cases, an alternative source can be used by the receiving entity to request the missing
segments through additional signaling, which is out of the scope of this specification.

6.9. Requirements for Ingest Source Synchronization§

The interface described in this clause is identified with the following identifier:

Identifer Reference Sections Comments

http://dashif.org/ingest/v1.2/interface-
1

http://dashif.org/ingest/v1.2 Clause
§ 6
Interface-
1: CMAF
Ingest

Conforming
to the
requirements
of clause § 6
Interface-1:
CMAF Ingest

The above identifier may be used by an entity to signal the support of the interface defined in clause
§ 6 Interface-1: CMAF Ingest.

Interface-2 defines the protocol specific behavior required to ingest a streaming presentation
composed of mandatory manifest objects and media objects to receiving entities. In this mode, the
ingest source prepares and delivers to the receiving entity all the objects intended for consumption
by a client. These are a complete streaming presentation including all manifest and media objects.

This interface is intended to be used by workflows that do not require active media processing after
encoding. It leverages the fact that many encoders provide DASH and HLS packaging capabilities and
that the resulting packaged content can easily be transferred via HTTP to standard web servers.
However, neither DASH nor HLS has specified how such a workflow is intended to work leaving the
industry to self-specify key decisions such as how to secure and authenticate ingest sources, who is
responsible for managing the content life cycle, the order of operations, failover features,
robustness methods, etc. In most cases, a working solution can be had using a readily available web
server such as Nginx or Varnish and the standard compliment of HTTP methods. In many cases,
Interface-2 simply documents what is considered an industry best practice while attempting to
provide guidance to areas less commonly considered.

The requirements below (in addition to the common requirements listed in § 5 Common
Requirements for Interface-1 and Interface-2) encapsulate all the needed functionality to support
Interface-2. In case [MPEGCMAF] media is used, the media track and segment formatting will be
similar as defined in Interface-1.

6.10. Identifier§

7. Interface-2: DASH and HLS Ingest§

7.1. General Requirements§

1. The ingest source MUST be able to create a compliant streaming presentation for DASH and/or
HLS. The ingest source may create both DASH and HLS streaming presentations using common
media objects (i.e., CMAF), but the ingest source MUST generate format-specific manifest
objects.

7.1.1. HTTP Sessions§

1. The ingest source SHOULD remove media objects from the receiving entity that are no longer
referenced in the corresponding manifest objects via an HTTP DELETE command. How long the
ingest source waits to remove unreferenced content can be configurable. Upon receiving an
HTTP DELETE command, the receiving entity SHOULD:

1a. delete the referenced content and return an HTTP 200 OK status code,

1b. delete the corresponding folder if the last file in the folder is deleted and it is not a root
folder and not necessarily recursively deleting empty folders.

7.1.2. Unique Segment and Manifest Naming§

1. The ingest source MUST ensure all media objects (video segments, audio segments, initialization
segments and caption segments) have unique paths. This uniqueness applies across all ingested
content in previous sessions as well as the current session. This requirement ensures previously
cached content (i.e., by a CDN) is not inadvertently served instead of newer content of the same
name.

2. The ingest source MUST ensure all objects in a live stream session are contained within the
configured path. Should the receiving entity receive media objects outside of the allowed path,
it SHOULD return an HTTP 403 Forbidden response.

3. For each live stream session, the ingest source MUST provide unique paths for the manifest
objects. One suggested method of achieving this is to introduce a timestamp of the start of the
live stream session into the manifest path. A session is defined by the explicit start and stop of
the encoding process.

4. When receiving objects with the same path as an existing object, the receiving entity MUST
overwrite the existing objects with the newer objects of the same path.

5. To support unique naming and consistency, the ingest source SHOULD include a number, which
is monotonically increasing with each new media object at the end of media object’s name,
separated by a non-numeric character. This way it is possible to retrieve this numeric suffix via a
regular expression.

Table 6: List of the permissible combinations of file extensions and MIME types.

File extension MIME type

.m3u8 [RFC8216] application/x-mpegURL or vnd.apple.mpegURL

.mpd [MPEGDASH] application/dash+xml

.cmfv [MPEGCMAF] video/mp4

.cmfa [MPEGCMAF] audio/mp4

.cmft [MPEGCMAF] application/mp4

.cmfm [MPEGCMAF] application/mp4

.mp4 [ISOBMFF] video/mp4 or application/mp4

.m4v [ISOBMFF] video/mp4

.m4a [ISOBMFF] audio/mp4

.m4s [ISOBMFF] video/iso.segment

.init video/mp4

.header [ISOBMFF] video/mp4

.key application/octet-stream

NOTE: Using DASH SegmentTemplate with @media and @intitialization and a single period can
achieve this.

6. The ingest source MUST identify media objects containing initialization fragments by using the
.init file extension.

7. The ingest source MUST include a file extension and a MIME type for all media objects. Table 6
outlines the formats that manifest and media objects are expected to follow based on their file
extension. Segments may be formatted as MPEG4 (.mp4, .m4v, m4a), [MPEGCMAF] (.cmfv,
.cmfa, .cmfm, .cmft) or [MPEG2TS] .ts (HLS only). Manifests may be formatted as DASH (.mpd) or
HLS (.m3u8).

NOTE: Using MPEG-2 TS breaks consistency with Interface-1, which uses a CMAF container
format structure.

The following items defines additional behavior of an ingest source when encountering certain error
responses from the receiving entity.

7.1.3. Additional Failure Behaviors§

1. When the ingest source receives a TCP connection attempt timeout, abort midstream, response
timeout, TCP send/receive timeout or an HTTP 5xx error code when attempting to POST content
to the receiving entity, it MUST:

1a. For manifest objects: Re-resolve DNS on each retry (per the DNS TTL) and retry as defined in
§ 5 Common Requirements for Interface-1 and Interface-2.

1b. For media objects: Re-resolve DNS on each retry (per the DNS TTL) and continue uploading
for n seconds, where n is the segment duration. After it reaches the media object duration
value, the ingest source MUST continue with the next media object and update the manifest
object with a discontinuity marker appropriate for the protocol format. To maintain continuity
of the timeline, the ingest source SHOULD continue to upload the missing media object with a
lower priority. The reason for this is to maintain an archive without discontinuity in case the
stream is played back at a later time. Once a media object is successfully uploaded, the ingest
source SHOULD update the corresponding manifest object to reflect the now available media
object.

NOTE: Some clients may not like changes made in the manifest about the past media
objects (e.g., removing a previously present discontinuity). Thus, care should be taken when
making such changes.

2. Upon receipt of an HTTP 403 or 400 error code, the ingest source MAY be configured to not
retry sending the fragments (N, as described in § 5 Common Requirements for Interface-1 and
Interface-2, will be 0 in this case).

7.2. DASH-Specific Requirements§

7.2.1. File Extensions and MIME Types§

1. The ingest source MUST use an .mpd file extension for the manifest.

2. The ingest source MUST use one of the allowed file extensions (see Table 6) for the media
objects.

7.2.2. Relative Paths§

The ingest source SHOULD use relative URLs to address each segment within the manifest.

In accordance with [RFC8216] recommendation, ingest sources MUST upload all required files for a
specific bitrate and segment before proceeding to the next segment. For example, for a bitrate that
has segments and a playlist that updates every segment and key files, ingest sources upload the
segment file followed by a key file (optional) and the playlist file in serial fashion. The encoder MUST
only move to the next segment after the previous segment has been successfully uploaded or after
the segment duration time has elapsed. The order of operation should be:

If there is a problem with any of the steps, retry. Do not proceed to step 3 until step 1 succeeds or
times out as described above. Failed uploads MUST result in a stream manifest discontinuity per
[RFC8216].

7.3. HLS-Specific Requirements§

7.3.1. File Extensions and MIME Types§

1. The ingest source MUST use an .m3u8 file extension for master and variant playlists.

2. The ingest source SHOULD use a .key file extension for any keyfile posted to the receiving entity
for client delivery.

3. The ingest source MUST use a .ts file extension for segments encapsulated in an MPEG-2 TS file
format.

4. The ingest source MUST use one of the allowed file extensions (see Table 6) appropriate for the
MIME type of the content encapsulated using [MPEGCMAF].

7.3.2. Relative Paths§

1. The ingest source SHOULD use relative URLs to address each segment within the variant
playlist.

2. The ingest source SHOULD use relative URLs to address each variant playlist within the master
playlist.

7.3.3. Encryption§

The ingest source may choose to encrypt the media segments and publish the corresponding
keyfile to the receiving entity.

7.3.4. Upload Order§

1. Upload the media segment,

2. Upload the key file (if required),

3. Upload the playlist.

The interface described in this clause is identified with the following identifier:

Identifer Reference Sections Comments

http://dashif.org/ingest/v1.2/interface-
2

http://dashif.org/ingest/v1.2 Clause
§ 7
Interface-
2: DASH
and HLS
Ingest

Conforming
to the
requirements
of clause § 7
Interface-2:
DASH and
HLS Ingest

The above identifier may be used by an entity to signal the support of the interface defined in clause
§ 7 Interface-2: DASH and HLS Ingest.

In this section, we provide some example deployments for live streaming.

Figure 10 shows an example where a separate packager and origin server are used.

Figure 10: Example setup with CMAF Ingest and DASH/HLS Ingest.

7.3.5. Resiliency§

1. When ingesting media objects to multiple receiving entities, the ingest source MUST send
identical media objects with identical names.

2. When multiple ingest sources are used, they MUST use consistent media object names including
when reconnecting due to an application or transport error. A common approach is to use
(epoch time)/(segment duration) as the object name.

7.4. Identifier§

8. Examples (Informative)§

8.1. Example 1: CMAF Ingest and a Just-in-Time Packager§

The broadcast source is used as input to the live encoder. The broadcast sources can be the SDI
signals from a broadcast facility or MPEG-2 TS streams intercepted from a broadcast that need to be
re-used in an OTT distribution workflow. The live encoder performs the encoding of the tracks into
CMAF tracks and functions as the ingest source in the CMAF Ingest interface. Multiple live encoders
can be used, providing redundant inputs to the packager using dual-encoder synchronization. In this
case, the segments are of constant duration, and audio and video segment boundaries are aligned.
Segments should use a timing relative to a shared anchor such as the Unix epoch as to support
synchronization based on epoch locking (see section on ingest source synchronization).

Following the CMAF Ingest specification in this document allows for failover and many other
features related to the content tracks. The live encoder performs the following tasks:

The live encoder can be deployed in the cloud or on a bare metal server or even as a dedicated
hardware. The live encoder may have some tools or configuration APIs to author the CMAF tracks
and feed instructions/properties from the SDI or broadcast feed into the CMAF tracks. The packager
receives the ingested streams and performs the following tasks.

It demuxes and receives the MPEG-2 TS and/or SDI signal.

It translates the metadata in these streams such as SCTE-35 or SCTE-104 to timed metadata
tracks.

It performs a high quality ABR encoding in different bitrates with aligned switching points.

It packages all media and timed text tracks as CMAF-compliant tracks and signals track roles in
"kind" boxes.

It posts the addressable media objects composing the tracks to the packager according to the
CMAF Ingest interface defined in § 6 Interface-1: CMAF Ingest, and optionally a manifest
describing the groupings and naming of the inputs.

The CMAF Ingest allows multiple live encoders and packagers to be deployed benefiting from
redundant stream creation avoiding timeline discontinuities due to failures as much as possible.

In case the receiving entity fails, it reconnects and resends as defined in § 5 Common
Requirements for Interface-1 and Interface-2 and § 6.8 Requirements for Failovers and
Connection Error Handling.

In case the ingest source itself fails, it restarts and performs the steps as in § 6.8 Requirements
for Failovers and Connection Error Handling.

It receives the CMAF tracks, grouping switching sets based on switching set constraints, based
on the "kind" box or information in the URI or MPD.

When packaging to DASH, an adaptation set is created for each switching set ingested.

The near constant fragment duration is used to generate segment template based presentation
using either $Number$ or $Time$.

In case a splice point occurs, an IDR frame is inserted in the segment without introducing a
segment boundary (this is important if more than one synchronized encoders are used). The
SCTE-35 signal is included as timed metadata.

The CDN consumes a DASH/HLS Ingest or serves as a proxy for content delivered to a client. The
CDN, in case it is consuming the POST-based DASH/HLS Ingest, performs the following tasks:

In case the CDN serves as a proxy, it only forwards requests for content to the packager to receive
the content and caches the relevant segments for a certain duration.

In case changes happen, the packager can update the manifest and embed inband events to
trigger manifest updates in the fragments.

The DASH packager encrypts media segments according to key information available. This key
information is typically exchanged by protocols defined in CPIX. This allows configuration of the
content keys, initialization vectors and embedding encryption information in the manifest.

The DASH packager signals subtitles in the manifest based on received CMAF streams and roles
signaled in the "kind" box.

In case a fragment is missing and SegmentTimeline is used, the packager signals a discontinuity
in the MPD.

In case the low-latency mode is used, the packager may make output available before the entire
fragment is received using HTTP chunked transfer encoding.

The packager may have a proprietary API similar to the live encoder for configuration of aspects
like the timeShiftBuffer, DVR window, encryption modes enabled, etc.

The packager uses DASH/HLS Ingest (as specified in § 7 Interface-2: DASH and HLS Ingest) to
push content to the origin server of a CDN. Alternatively, it could also make content directly
available as an origin server. In this case, DASH/HLS Ingest is avoided and the packager also
serves as the origin server.

The packager converts the timed metadata track and uses it to convert to either MPD events or
inband events signaled in the manifest. The packager creates a segment boundary in case this
was not present in the original ingest and in case a SCTE-35 splice event was received.

The packager may also generate HLS or other streaming media presentations based on the
input.

In case the packager crashes or fails, it restarts and waits for the ingest source to perform the
actions detailed in § 6.8 Requirements for Failovers and Connection Error Handling.

It stores all posted content and makes them available for HTTP GET requests from locations
corresponding to the paths signaled in the manifest.

It occasionally deletes content based on instructions from the ingest source, which is the
packager in this setup.

In case the low-latency mode is used, content could be made available before the entire pieces
of content are available.

It updates the manifest accordingly when a manifest update is received.

It serves as a proxy for HTTP GET requests forwarded to the packager.

The client receives DASH or HLS streams and is not affected by the specification of this work.
Nevertheless, it is expected that by using a common streaming format, less caching and less
overhead in the network will result in a better user experience. The client still needs to retrieve
license and key information by steps defined outside of this specification. Information on how to
retrieve this information will typically be signaled in the manifest prepared by the packager.

A second example is given in Figure 11. It constitutes the reference workflow for live chunked CMAF
developed by DASH-IF and DVB. In this workflow, a contribution encoder produces an RTP
mezzanine stream that is transmitted to FFmpeg, an example open-source encoder/packager
running on a server. Alternatively, a file resource may be used. In this workflow, the encoder
functions as the ingest source. FFmpeg produces the ingest stream with different ABR encoded
CMAF tracks. In addition, it sends a manifest that complies with DASH-IF and DVB low-latency CMAF
specification and MPD updates. The CMAF tracks also contain respective timing information (i.e.,
"prft"). In this case, the ingest source implements Interface-1 and Interface-2 based ingest at once.
By also resending CMAF headers in case of failures both interfaces may be satisfied. In some cases,
URI rewrite rules are needed to achieve the compatibility between Interface-1 and Interface-2. For
example, the DASH segment naming structure can be used to derive the explicit Streams()
keywords.

The origin server is used to pass the streams to the client and may in some cases also perform a re-
encryption or re-packaging of the streaming presentation as needed by the clients. The example
client is DASH.js and a maximum end-to-end latency of 3500 ms is targeted.

The approaches for authentication and DNS resolution are similar for the two interfaces, as are the
track formatting in case CMAF is used. This example does not use timed metadata. The ingest
source may resend the CMAF header or initialization segment in case of connection failures to
conform to the CMAF Ingest specification.

Figure 11: DASH-IF/DVB reference live chunked CMAF workflow.

8.2. Example 2: Low-Latency DASH, and Combination of Interface-1 and Interface-2§

Ingest of a single (or multiple) tracks can be achieved in FFmpeg with the MP4 and CMAF muxer. This
example shows the ingest of a single SMPTE header bar video track with FFmpeg.

#!/bin/bash
Publishing point url is ${PROTO}://${SERVER}:${PORT}/${ID}/ with default ID=live
SERVER="${1}"
PORT="${2}"
FF="${3}"
ID=live
PROTO=http

ffmpeg -nostats -i smptehdbars=size=1280x720:rate=25 -fflags genpts
-write_prft pts -movflags empty_moov+separate_moof+default_base_moof+cmaf
-f mp4 {PROTO}://${SERVER}:${PORT}/${ID}//Streams(video-1280x720-700k.cmfv)

A more extensive example with epoch locking (dual-encoder synchronization) is available from
PythonFFmpegIngest. In this case, a patch is used to add correct audio timescale and epoch time
offset to FFmpeg.

An example of CMAF and DASH/HLS ingest can be achieved using the DASH muxer. An example
script is shown below as provided by FFlabs.

#!/bin/bash
Example provided by FFlabs of low latency CMAF+DASH+HLS ingest
Period starts from current time
publishing point url is ${PROTO}://${SERVER}:${PORT}/${ID}/ with default ID=live
SERVER="${1}"
PORT="${2}"
FF="${3}"

Set your tls files here
#TLS_KEY="/home/borgmann/dash/certs/ingest_client_thilo.key"
#TLS_CRT="/home/borgmann/dash/certs/ingest_client_thilo.crt"
#TLS_CA="/home/borgmann/dash/certs/ca.crt"
#TS_OUT="/home/borgmann/dash/ts"

Linux camera input may be used as input
INPUT="/dev/video0"
INPUT_FPS="10"
ID=live
ACODEC=aac
VCODEC=h264_vaapi

9. Implementations (Informative)§

9.1. Implementation 1: FFmpeg Support for Interface-1 and Interface-2§

VCODEC=libx264
COLOR=bt709
TARGET_LATENCY="3.5"

if ["$SERVER" == "" -o "$PORT" == ""]
then
 echo "Usage: $0 []"
 exit
else
 if ["$FF" == ""]
 then
 FF=ffmpeg
 fi

 if ["${TLS_KEY}" != "" -a "${TLS_CRT}" != "" -a "${TLS_CA}" != ""]
 then
 PROTO=https
 HTTP_OPTS="-http_opts key_file=${TLS_KEY},cert_file=${TLS_CRT},ca_file=${TLS_CA},tls_verify=1"
 else
 PROTO=http
 HTTP_OPTS=""
 fi

 echo "Ingesting to: ${PROTO}://${SERVER}:${PORT}/${ID}/${ID}.mpd"

fi

DASH HLS CMAF
${FF} \
-framerate ${INPUT_FPS} \
-i ${INPUT} \
-f lavfi -i sine \
-pix_fmt yuv420p \
-c:v ${VCODEC} -b:v:0 500K -b:v:1 200K -s:v:0 960x400 -s:v:1 720x300 \
-map 0:v:0 -map 0:v:0 \
-c:a ${ACODEC} -b:a 96K -ac 2 \
-map 1:a:0 \
-use_timeline 1 \
-media_seg_name "chunk-stream\$RepresentationID\$-\$Time\$.\$ext\$" \
-mpd_profile dvb_dash \
-utc_timing_url "http://time.akamai.com" \
-format_options "movflags=cmaf" \
-frag_type duration \
-adaptation_sets "id=0,seg_duration=7.68,frag_duration=1.92,streams=0,1 id=1,seg_duration=1,frag_type=non
-g:v 20 -keyint_min:v 20 -sc_threshold:v 0 -streaming 1 -ldash 1 -tune zerolatency \
-export_side_data prft \
-write_prft 1 \
-target_latency ${TARGET_LATENCY} \

-color_primaries ${COLOR} -color_trc ${COLOR} -colorspace ${COLOR} \
-f dash \
${HTTP_OPTS} \
${PROTO}://${SERVER}:${PORT}/${ID}/${ID}.mpd

Another example of ingesting CMAF track files is provided by fmp4tools as described in LiveCMAF. In
this case, stored track files are used. The tool can patch the timestamp of the input tracks to a real
time and upload the segments in real time. The tool can upload timed text and timed metadata
tracks. Also, the tools support conversion and creation of timed metadata tracks, and on-the-fly
generation of avail cues based on SCTE-35.

Options available when using fmp4 tools:

Usage: fmp4ingest [options]
 [-u url] Publishing Point URL
 [-r, --realtime] Enable realtime mode
 [-l, --loop] Enable looping arg1 + 1 times
 [--wc_offset] (boolean)Add a wallclock time offset for converting VoD (0) asset to Live
 [--ism_offset] insert a fixed value for hte wallclock time offset instead of using a remote time source u
 [--wc_uri] uri for fetching wall clock time default time.akamai.com
 [--initialization] SegmentTemplate@initialization sets the relative path for init segments, shall include $R
 [--media] SegmentTemplate@media sets the relative path for media segments, shall include $Rep
 [--avail] signal an advertisment slot every arg1 ms with duration of arg2 ms
 [--dry_run] Do a dry run and write the output files to disk directly for checking file and box integrity
 [--announce] specify the number of seconds in advance to presenation time to send an avail
 [--auth] Basic Auth Password
 [--aname] Basic Auth User Name
 [--sslcert] TLS 1.2 client certificate
 [--sslkey] TLS private Key
 [--sslkeypass] passphrase
 CMAF files to ingest (.cmf[atvm])

Example command line using fmp4 tools:

Example with inserting 9600 ms breaks every 57.6 seconds with three track
files for audio, video and timed text
Also a wallclock time is added
fmp4ingest -r -u publishing_point_url --wc_offset --avail 57600 9600 tos-096-750k.cmfv tos-096s-128k.cmfa tea

9.2. Implementation 2: Ingesting CMAF Track Files Based on fmp4 Tools§

Example creating a timed metadata track from a DASH manifest:

Example converting an MPD with DASH events to a timed metadata track
dashEventfmp4 scte-35.mpd scte-35.cmfm

This initial version with Interface-1 and Interface-2 was published in April 2020.

Technical updates completed:

Editorial updates completed:

10. List of Versions and Changes§

10.1. Version 1.0§

10.2. Version 1.1§

1. Added a section on encoder synchronization (issues #126 and #140)

2. Added restriction for single segment per post or PUT (issue #112)

3. Added text on encoder input loss (issue #113)

4. Added guidance on the manifest formatting (issue #111)

5. Added reference to MPEG-B part 18 for timed metadata track (issue #31)

6. Clarified emsg time is leading (issue #129)

7. Added the brand for the last segment (issue #114)

8. Deprecated the usage of mfra to close the ingest (issue #124)

9. Allowed common encryption of media tracks (issue #117)

10. Added text on requesting segments from an alternative server (issue #119)

11. Swapped priority preferred sample entry to hev1/avc3 (issue #115)

12. Clarified SCTE-35 carriage (issues #128, #133, #130, #121 and #127)

13. Added text for the prft box and made it a requirement (issue #116)

14. Added guidelines for constant segment duration for timed metadata (issue #145)

15. Added text on conversion of MPEG-2 TS to DASH timeline (issue #131)

16. Added an informative section with example implementations (issue #147)

17. Added additional requirements on the formatting of DASH MPD for CMAF ingest (issue #125)

18. Added additional requirements on the formatting of HTTP Live Streaming playlist (issue #148)

19. Deprecated streams keyword in favor of manifest + SEgmentTEmplate signals (issue #125)

Technical updates completed:

We thank the contributors from the following companies for their comments and support: Huawei,
Akamai, BBC, CenturyLink, Microsoft, Unified Streaming, Facebook, Hulu, Comcast, ITV, Qualcomm,
Tencent, Samsung, MediaExcel, Harmonic, Sony, Arris, Bitmovin, ATEME, EZDRM, DSR, Broadpeak
and AWS Elemental.

fmp4git: Unified Streaming fmp4-ingest: https://github.com/unifiedstreaming/fmp4-ingest

aomid3: Carriage of ID3 Timed Metadata in the Common Media Application Format (CMAF):
https://aomediacodec.github.io/id3-emsg

Mozilla-TLS: Mozilla Wiki Security/Server Side TLS:
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29

MS-SSTR: Smooth Streaming Protocol: https://msdn.microsoft.com/en-us/library/ff469518.aspx

fmp4tools: fmp4 Ingest Tools: https://github.com/unifiedstreaming/fmp4-ingest/tree/master/ingest-
tools

LiveCMAF: Tools for Live CMAF Ingest: https://dl.acm.org/doi/abs/10.1145/3339825.3394933

1. Fixed capitalization errors, cross reference errors and some terms

2. Updated the references

3. Clarified POST_URL vs. publishing_point_URL

4. Cleaned up the informative sections

5. Updated the diagrams including the fixes

6. Updated/simplified the text for the examples

7. Fixed several references (including new/updated section numbers)

8. Made text referring to CMAF less verbose

9. Moved some of the common requirements of Interface 2 to general 1-2 requirements

10.3. Version 1.2§

1. Added an identifier for the protocols

2. Added an interface identifier for both interfaces

11. Acknowledgements§

12. URL References§

DASH-IFad: Advanced Ad Insertion in DASH (under community review): https://dashif.org/docs/CR-
Ad-Insertion-r4.pdf

PythonFFmpegIngest: Python Script for Generating Interface-1 with FFmpeg:
https://github.com/unifiedstreaming/live-demo-cmaf/blob/master/ffmpeg/entrypoint.py

Index§

Terms defined by this specification§

ABR, in § 3

aomid3, in § 12

baseMediaDecodeTime, in § 3

CMAF chunk, in § 3

CMAF fragment, in § 3

CMAF header, in § 3

CMAF Ingest, in § 3

CMAF media object, in § 3

CMAF presentation, in § 3

CMAFstream, in § 3

CMAF track, in § 3

connection, in § 3

DASH-IFad, in § 12

DASH Ingest, in § 3

elng, in § 3

fmp4git, in § 12

fmp4tools, in § 12

ftyp, in § 3

HLS Ingest, in § 3

HTTP POST, in § 3

HTTP PUT, in § 3

ingest source, in § 3

ingest stream, in § 3

LiveCMAF, in § 12

live encoder, in § 3

live stream session, in § 3

manifest objects, in § 3

mdat, in § 3

mdhd, in § 3

media fragment, in § 3

media objects, in § 3

mfra (deprecated), in § 3

moof, in § 3

Mozilla-TLS, in § 12

MS-SSTR, in § 12

nmhd, in § 3

objects, in § 3

OTT, in § 3

POST_URL, in § 3

prft, in § 3

publishing_point_URL, in § 3

PythonFFmpegIngest, in § 12

receiving entity, in § 3

RTP, in § 3

streaming presentation, in § 3

switching set, in § 3

switching set ID, in § 3

TCP, in § 3

tfdt, in § 3

ETSI TS 103 285 V1.2.1 (2018-03): Digital Video Broadcasting (DVB); MPEG-DASH Profile for Transport
of ISO BMFF Based DVB Services over IP Based Networks. March 2018. Published. URL:
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf

ID3 tag version 2.4.0 - Main Structure. URL: http://id3.org/id3v2.4.0-structure

ISO/TC 37/SC 2. Codes for the representation of names of languages -- Part 2: Alpha-3 code. 1998.
International Standard. URL: https://www.iso.org/standard/4767.html

Information technology — Coding of audio-visual objects — Part 12: ISO base media file format.
Under development. URL: https://www.iso.org/standard/85596.html

Information technology — Generic coding of moving pictures and associated audio information —
Part 1: Systems. December 2023. Published. URL: https://www.iso.org/standard/87619.html

Information technology — Coding of audio-visual objects — Part 30: Timed text and other visual
overlays in ISO base media file format. November 2018. Published. URL:
https://www.iso.org/standard/75394.html

Information technology — Multimedia application format (MPEG-A) — Part 19: Common media
application format (CMAF) for segmented media. February 2024. Published. URL:
https://www.iso.org/standard/85623.html

Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media
presentation description and segment formats. Under development. URL:
https://www.iso.org/standard/89027.html

Information technology — High efficiency coding and media delivery in heterogeneous environments
— Part 2: High efficiency video coding. October 2023. Published. URL:
https://www.iso.org/standard/85457.html

P. Mockapetris. Domain names - implementation and specification. November 1987. Internet
Standard. URL: https://www.rfc-editor.org/rfc/rfc1035

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current
Practice. URL: https://datatracker.ietf.org/doc/html/rfc2119

References§

Normative References§

[DVB-DASH]

[ID3v2]

[ISO-639-2]

[ISOBMFF]

[MPEG2TS]

[MPEG4-30]

[MPEGCMAF]

[MPEGDASH]

[MPEGHEVC]

[RFC1035]

[RFC2119]

http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
http://id3.org/id3v2.4.0-structure
http://id3.org/id3v2.4.0-structure
https://www.iso.org/standard/4767.html
https://www.iso.org/standard/4767.html
https://www.iso.org/standard/85596.html
https://www.iso.org/standard/85596.html
https://www.iso.org/standard/87619.html
https://www.iso.org/standard/87619.html
https://www.iso.org/standard/87619.html
https://www.iso.org/standard/75394.html
https://www.iso.org/standard/75394.html
https://www.iso.org/standard/75394.html
https://www.iso.org/standard/85623.html
https://www.iso.org/standard/85623.html
https://www.iso.org/standard/85623.html
https://www.iso.org/standard/89027.html
https://www.iso.org/standard/89027.html
https://www.iso.org/standard/89027.html
https://www.iso.org/standard/85457.html
https://www.iso.org/standard/85457.html
https://www.iso.org/standard/85457.html
https://www.rfc-editor.org/rfc/rfc1035
https://www.rfc-editor.org/rfc/rfc1035
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

H. Schulzrinne; et al. RTP: A Transport Protocol for Real-Time Applications. July 2003. Internet
Standard. URL: https://www.rfc-editor.org/rfc/rfc3550

R. Shekh-Yusef, Ed.; D. Ahrens; S. Bremer. HTTP Digest Access Authentication. September 2015.
Proposed Standard. URL: https://httpwg.org/specs/rfc7616.html

J. Reschke. The 'Basic' HTTP Authentication Scheme. September 2015. Proposed Standard. URL:
https://httpwg.org/specs/rfc7617.html

W. Eddy, Ed.. Transmission Control Protocol (TCP). August 2022. Internet Standard. URL:
https://www.rfc-editor.org/rfc/rfc9293

R. Pantos, Ed.; W. May. HTTP Live Streaming. August 2017. Informational. URL: https://www.rfc-
editor.org/rfc/rfc8216

R. Fielding, Ed.; M. Nottingham, Ed.; J. Reschke, Ed.. HTTP Semantics. June 2022. Internet
Standard. URL: https://httpwg.org/specs/rfc9110.html

R. Fielding, Ed.; M. Nottingham, Ed.; J. Reschke, Ed.. HTTP/1.1. June 2022. Internet Standard. URL:
https://httpwg.org/specs/rfc9112.html

ANSI/SCTE 214-3 2015: MPEG DASH for IP-Based Cable Services Part 3: DASH/FF Profile. URL:
https://scte-cms-resource-storage.s3.amazonaws.com/Standards/ANSI_SCTE%20214-
3%202015.pdf

ANSI/SCTE 35 2020: Digital Program Insertion Cueing Message. URL: https://scte-cms-resource-
storage.s3.amazonaws.com/ANSI_SCTE-35-2020-1619708851007.pdf

[RFC3550]

[RFC7616]

[RFC7617]

[RFC793]

[RFC8216]

[RFC9110]

[RFC9112]

[SCTE214-3]

[SCTE35]

https://www.rfc-editor.org/rfc/rfc3550
https://www.rfc-editor.org/rfc/rfc3550
https://httpwg.org/specs/rfc7616.html
https://httpwg.org/specs/rfc7616.html
https://httpwg.org/specs/rfc7617.html
https://httpwg.org/specs/rfc7617.html
https://www.rfc-editor.org/rfc/rfc9293
https://www.rfc-editor.org/rfc/rfc9293
https://www.rfc-editor.org/rfc/rfc8216
https://www.rfc-editor.org/rfc/rfc8216
https://www.rfc-editor.org/rfc/rfc8216
https://httpwg.org/specs/rfc9110.html
https://httpwg.org/specs/rfc9110.html
https://httpwg.org/specs/rfc9112.html
https://httpwg.org/specs/rfc9112.html
https://scte-cms-resource-storage.s3.amazonaws.com/Standards/ANSI_SCTE%20214-3%202015.pdf
https://scte-cms-resource-storage.s3.amazonaws.com/Standards/ANSI_SCTE%20214-3%202015.pdf
https://scte-cms-resource-storage.s3.amazonaws.com/Standards/ANSI_SCTE%20214-3%202015.pdf
https://scte-cms-resource-storage.s3.amazonaws.com/ANSI_SCTE-35-2020-1619708851007.pdf
https://scte-cms-resource-storage.s3.amazonaws.com/ANSI_SCTE-35-2020-1619708851007.pdf
https://scte-cms-resource-storage.s3.amazonaws.com/ANSI_SCTE-35-2020-1619708851007.pdf

