
DASH-IF Implementation Guidelines:
Content Protection Information
Exchange Format (CPIX)

GitHub

DASH Industry Forum

Table of Contents

1 Scope

2 Disclaimer

3 Normative Language

4 Introduction

5 Definition of Terms

6 Use Cases and Requirements
6.1 Introduction

6.2 Overview of the End to End Architecture

6.3 Use Cases for the Preparation of Content

6.3.1 Introduction

Commit Snapshot, 30 September 2024

Issue Tracking:

Editor:

https://www.dashif.org/
https://www.dashif.org/
https://github.com/Dash-Industry-Forum/CPIX/issues

6.3.2 On-Demand Content

6.3.3 Live Content

6.3.4 Catch-up

6.4 Exchange over an Interface

6.4.1 Introduction

6.4.2 Content Key Delivery to One Entity

6.4.3 Secure Content Key Delivery to Several Entities

6.4.4 Content Key Delivery with Usage Rules

6.4.4.1 Introduction

6.4.4.2 Label Filter

6.4.4.3 Key Period Filter

6.4.4.4 Policy-based Filters

6.4.5 Content Key Delivery with DRM Signaling

6.4.6 Incremental Update and Extension of the Document

6.4.7 Multiple Content Keys Delivery for Multiples Assets

6.4.8 Content Key Hierarchy Delivery for Content Packaging

6.4.9 Root Key Delivery for License Server Operation

6.5 Workflow Examples

6.5.1 Encryptor Producer and Encryptor Consumer
6.5.1.1 Introduction

6.5.1.2 Encryptor Producer

6.5.1.3 Encryptor Consumer

6.5.2 Multiple Producers

7 XSD Schema Definition
7.1 Introduction

7.2 Requirements

7.3 Structure Overview

7.4 Hierarchical Data Model

7.4.1 Introduction

7.4.2 CPIX Element

7.4.3 DeliveryDataList Element

7.4.4 DeliveryData Element

7.4.5 DocumentKey Element

7.4.6 ContentKeyList Element

7.4.7 ContentKey Element

7.4.8 HDCPData Element

7.4.9 DRMSystemList Element

7.4.10 DRMSystem Element

7.4.11 ContentProtectionData Element

7.4.12 HLSSignalingData Element

7.4.13 ContentKeyPeriodList Element

7.4.14 ContentKeyPeriod Element

7.4.15 ContentKeyUsageRuleList Element

7.4.16 ContentKeyUsageRule Element

7.4.17 Usage Rules Filters
7.4.17.1 Introduction

7.4.17.2 KeyPeriodFilter Element

7.4.17.3 LabelFilter Element

7.4.17.4 VideoFilter Element

7.4.17.5 AudioFilter Element

7.4.17.6 BitrateFilter Element

7.4.18 UpdateHistoryItemList Element

7.4.19 UpdateHistoryItem Element

8 Key Management
8.1 Key Encryption and Authentication in the CPIX Document

8.1.1 Introduction

8.1.2 Encryption

8.1.3 Authenticated Encryption

8.1.4 Digital Signature

8.1.5 Mandatory Algorithms

8.2 Key Rotation Support

8.3 Content Keys with Several Protection Encryption Schemes

9 CPIX Documents Best Practices

10 Abbreviations

References
Normative References

The scope of this document is to define a Content Protection Information Exchange
Format (CPIX). A CPIX document contains keys and DRM information used for encrypting
and protecting content and can be used for exchanging this information among entities
needing it in many possibly different workflows for preparing, for example, DASH or HLS
content. The CPIX document itself can be encrypted, signed and authenticated so that
its receivers can be sure that its confidentiality, source and integrity are also protected.

This specification describes version 2.4 of the CPIX document format.

Detailed changes with respect to version 2.3.1 are tracked on GitHub. Highlighted
changes are:

Detailed changes with respect to version 2.3 are tracked on GitHub. Highlighted changes
are:

1. Scope§

Added the option to encrypt Content Keys with different Document Keys, see
clauses § 7.4.3 DeliveryDataList Element and § 8.1.2 Encryption

Added the option to have in one document with Content Keys for different content,
allowing the bulk transfer of content keys information in one document, hence
adding a @contentIdunder the ContentKey element, see clause § 6.4.7 Multiple
Content Keys Delivery for Multiples Assets and § 7.4.7 ContentKey Element

Added HDCP information attached to the Content Key to be inserted in both HLS
playlist and DASH MPD, see clause § 7.4.8 HDCPData Element

Added expected DRM robustness information to be inserted in both HLS playlist
and DASH MPD, see clause § 7.4.10 DRMSystem Element and § 7.4.11
ContentProtectionData Element

Simplified the ContentKey element by removing all non-used element inherited from
the PSCK model, see clause § 7.4.7 ContentKey Element

Updated the HLS terminology to multiVariant , see clause § 7.4.12 HLSSignalingData
Element

Removed the signaling for HDS and the deprecated URIExtXKey for HLS, see clause
§ 7.4.10 DRMSystem Element

Updated references

Clarified that key ids shall be UUID as described in [MPEGCENC] (added a constraint)

https://github.com/Dash-Industry-Forum/CPIX/issues
https://github.com/Dash-Industry-Forum/CPIX/issues

This is a document made available by DASH-IF. The technology embodied in this
document may involve the use of intellectual property rights, including patents and
patent applications owned or controlled by any of the authors or developers of this
document. No patent license, either implied or express, is granted to you by this
document. DASH-IF has made no search or investigation for such rights and DASH-IF
disclaims any duty to do so. The rights and obligations which apply to DASH-IF
documents, as such rights and obligations are set forth and defined in the DASH-IF
Bylaws and IPR Policy including, but not limited to, patent and other intellectual property
license rights and obligations. A copy of the DASH-IF Bylaws and IPR Policy can be
obtained at https://dashif.org/.

The material contained herein is provided on an AS IS basis and to the maximum extent
permitted by applicable law, this material is provided AS IS, and the authors and
developers of this material and DASH-IF hereby disclaim all other warranties and
conditions, either express, implied or statutory, including, but not limited to, any (if any)
implied warranties, duties or conditions of merchantability, of fitness for a particular
purpose, of accuracy or completeness of responses, of workmanlike effort, and of lack
of negligence.

Corrected a bug on @periodId that shall be a XS:REFID, see clause § 7.4.17.2
KeyPeriodFilter Element

Clarification on the @explicitIV attribute under the ContentKey element encoding, see
clause § 7.4.7 ContentKey Element

Taking into account the scenario described in Clause 9 of [DASHIF-IOPv5p6] for key
rotation, clarification for the PSSH and ContentProtectionData content under
DRMSystem . A clause is also added on this topic. See clause § 7.4.10 DRMSystem
Element and § 8.2 Key Rotation Support

Clean-up the Use Cases and Requirements clause (removed the electronic sell
through use case)

Addition of the @version attribute under the CPIX element, see clause § 7.4.2 CPIX
Element

Addition of a clause on using the same content key with different encryption
schemes, see clause § 8.3 Content Keys with Several Protection Encryption Schemes

Updated references

2. Disclaimer§

In addition, this document may include references to documents and/or technologies
controlled by third parties.Those third party documents and technologies may be
subject to third party rules and licensing terms. No intellectual property license, either
implied or express, to any third party material is granted to you by this document or
DASH-IF. DASH-IF makes no any warranty whatsoever for such third party material.

In the present document shall, shall not, should, should not, may, need not, will, will
not, can and cannot are to be interpreted as described in clause 3.2 of the ETSI Drafting
Rules (Verbal forms for the expression of provisions). must and must not are NOT
allowed in deliverables except when used in direct citation.

This document defines a container allowing the exchange between entities of content
protection information typically made of keys used for encrypting content and any
associated DRM specific information. There may be one or several keys and these keys
may be protected by one or several DRMs, hence there may be one or several DRM
specific information. There is no assumption on the entities exchanging this information
but it is not expected that a client device will use this exchange format. The goal is to
allow entities involved in the content preparation workflow to get the content protection
information so that, for example a DASH MPD can be generated with all content
protection information.

Because the defined container is not made for a specifically defined content preparation
workflow but is generic, conformance is not considered to be a critical part of CPIX. As a
consequence, no conformance is defined for this specification.

One or more audio-visual elementary streams and the associated MPD if in DASH
format.

A cryptographic key used for encrypting part of the Content.

3. Normative Language§

4. Introduction§

5. Definition of Terms§

Content

Content Key

https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

The portion of a media stream which is encrypted with a specific Content Key.

The mechanism ensuring that only authorized devices get access to Content.

A cryptographic key used for encrypting the Content Key(s) in the CPIX document.

The DRM specific information to be added in Content for proper operation of the
DRM system when authorizing a device for this Content. It is made of proprietary
information for licensing and key retrieval.

Protection System Specific Header box that is part of an ISOBMFF file. This box
contains DRM Signaling.

Content Keys and DRM Signaling, a.k.a. content protection information need to be
created and exchanged between some system entities when preparing Content. The
flows of information are of very different nature depending on where Content Keys are
created and also depending on the type of Content that can be either On-Demand or
Live.

This clause presents different use cases where such exchanges are required. § 6.2
Overview of the End to End Architecture is an overview of the general context in which
exchange of content protection information is happening, § 6.3 Use Cases for the
Preparation of Content describes some workflows for content creation and § 6.4
Exchange over an Interface goes in the details of how content protection information
can be exchanged over an interface between two entities.

This clause gives a general overview of the context in which content protection
information need to be exchanged between entities in the backend. It completes clause
4 of [DASHIF-IOPv5p6] by putting more emphasis on the backend aspects.

Content Key Context

Content Protection

Document Key

DRM Signaling

PSSH

6. Use Cases and Requirements§

6.1. Introduction§

6.2. Overview of the End to End Architecture§

This clause takes DASH content as an example for providing more specific and clear
understanding, but this can be generalized to other streaming formats, such as HLS
[HLS].

Figure 1 Logical roles that exchange DRM information and media.

The figure above shows logical entities that may send or receive content protection
information such as content keys, asset identifiers, licenses, and DRM signaling (license
acquisition information for example). A physical entity may combine multiple logical
roles, and the point of origin for information, such as content keys and asset identifiers,
can differ; so various information flows are possible. This is an example of how the roles
are distributed to facilitate the description of workflow and use cases. Alternative roles
and functions can be applied to create conformant content. The different roles are:

A publisher who provides the rights and rules for delivering protected media, also
possibly source media (mezzanine format, for transcoding), asset identifiers, key
identifiers (KID), content key values, encoding instructions, and content description
metadata.

A service provider who encodes media in a specified set of formats with different
bitrates and resolutions etc., possibly determined by the publisher.

A service provider who encrypts and packages media, inserting DRM Signaling and
metadata into the media files. In the case of DASH packaging, this consists of adding
the default_KID in the file header tenc box, initialization vectors (IV) and subsample
byte ranges in track fragments indexed by saio and saiz boxes, and possibly one or
more pssh boxes containing license acquisition information (from the DRM Service).
Tracks that are partially encrypted or encrypted with multiple keys require sample
to group boxes and sample group description boxes in each track fragment to
associate different KIDs to groups of samples. The Packager could originate values
for KIDs, Content Keys, encryption layout, etc., then send that information to other
entities that need it, including the DRM Service, and probably the Content Provider.
However, the Packager could receive that information from a different point of
origin, such as the Content Provider or DRM Service.

A service provider which generates the media manifests which group the various
media files into a coherent presentation. These manifest files may contain DRM
signaling information. For DASH, the MPD Creator is assumed to create one or more
types of DASH MPD files and provide indexing of segments and/or sidx indexes for
download so that players can byte range index subsegments. The MPD shall include
descriptors for Common Encryption and DRM systems and should include
identification of the @default_KID for each AdaptationSet element, and sufficient
information in ContentProtection elements to acquire a DRM license. The
@default_KID is available from the Packager and any other role that created it, and
the DRM signaling is available from the DRM Service.

It gets information from different sources: media manifest files, media files, and
DRM licenses.

The DRM Service creates licenses containing a protected Content Key that can only
be decrypted by a trusted DRM Client. It needs to know the @default_KID and DRM

Content Provider

Encoder

Packager / Encryptor

Manifest Creator

DRM Client

DRM Service

systemID and possibly other information like asset ID in order to create and
download one or more licenses required for a Presentation on a particular device.
Each DRM system has different license acquisition information, a slightly different
license acquisition protocol, and a different license format with different playback
rules, output rules, revocation and renewal system, etc. For DASH, the DRM Service
typically shall supply the Packager license acquisition information for each
ContentProtection element or pssh box, respectively. The DRM Service may also
provide logic to manage key rotation, DRM domain management, revocation and
renewal and other Content Protection related features.

This clause describes some workflows for content preparation where content protection
information is exchanged between or carried through some entities.

As for the previous clause, this clause takes DASH content as an example for providing
more specific and clear understanding, but this can be generalized to other streaming
formats, such as HLS.

The flow for preparing On-Demand Content requires that a media asset is available non-
encrypted, ideally in the maximum resolution so that an adaptive streaming
presentation can be prepared.

One possible flow is that a Content Management System (CMS) creates a workflow
ensuring that DASH Content is prepared. The CMS makes the file available to a
transcoder. The transcoder outputs the segmented files that can be encrypted. The
encryption engine either generates the Content Keys or requests them from a DRM
system. The DRM system also provides pssh boxes to be added to the media files, as
well as ContentProtection elements to be added to the MPD file. When the encrypted
DASH Content is ready, the MPD is generated by a MPD Generator It asks the DRM
system the required DRM Signaling to be added in the MPD. DASH content is then
uploaded by the CMS on a CDN making it available to users. In parallel, editorial
metadata is exported to the Portal, enabling access to users. DRM systems receive

6.3. Use Cases for the Preparation of Content§

6.3.1. Introduction§

6.3.2. On-Demand Content§

relevant metadata information that needs to be included in the license (output controls)
when creating a license.

This flow is summarized in the figure below where arrows show the flow of information.

Figure 2 Example of workflow for On-Demand Content preparation.

Metadata is regularly imported with new or updated information. Metadata can include
different type of information on the EPG events such as the duration of the event, the
list of actors, the output controls usage rules, a purchase window, etc.

Content is continuously received, transcoded in the desired format and encrypted if any
type of entitlement is required.

One or many Content Keys can be used if key rotation is used or not. Such setting is
static and configuration is hard-coded in the relevant equipment, hence a Content
Management System is not required for this workflow to operate. As for Content on-
Demand, keys are generated by the encryption engine or the DRM system and are
available to all DRM systems and the encryption engine at the right moment depending
on how these keys are used. The encoder requests to the DRM systems their specific
signaling, if any, to be added in the MPD.

Encrypted segments and the media manifest are uploaded on a CDN making it available
to users.

Metadata is exported to the Portal, enabling access to users. DRM systems receive
relevant metadata information that needs to be included in the license (output controls).

This flow is summarized in the figure below where arrows show the flow of information.

6.3.3. Live Content§

Figure 3 Example of workflow for Live Content preparation.

Live Content has already been encoded and encrypted (if required) for Live unicast. All
DRM systems have access to the keys.

Additional metadata may be required for ensuring that events are effectively available in
catch-up. These are made available to the Portal and some Live events are identified as
being able to be replayed as On-demand. Optionally, the operator may choose to
replace the advertising content with targeted ads.

This clause gives details on how content protection information is exchanged or
transferred over an interface between two or more entities.

In the simplest use case, content protection information is made of a Content Key. One
entity sends a Content Key to the other entity.

Figure 4 Content Key delivery to one entity.

6.3.4. Catch-up§

6.4. Exchange over an Interface§

6.4.1. Introduction§

6.4.2. Content Key Delivery to One Entity§

The primary data model carried by content protection information document is made of
one to many Content Keys with their associated KIDs. Any context or meaning is
attributed externally. The document simply serves as a standard way to serialize
Content Keys for delivery.

This use case is an extension of clause § 6.4.2 Content Key Delivery to One Entity and is
compatible with the use cases presented in the following clauses.

Figure 5 Secure Content Key delivery to several entities.

The entities exchanging Content Keys may want to rely upon a trust relationship that
ensures authentication and privacy of communications. Such a mechanism can be
provided by the communication protocol used to deliver the document but the
document can also be self-protected. CPIX documents can deliver Content Keys in
encrypted and digitally signed form, enabling confidentiality, authentication and
nonrepudiation.

In situations with more than one recipient, the document allows each one to decrypt the
Content Keys using its own private key.

These use cases are extension of § 6.4.2 Content Key Delivery to One Entity and present
different rules that can be applied on a Content Key when delivered to an entity. Each
usage rule defines a set of filters that are used to define a Content Key Context. If a rule
match is found, the Content Key referenced by the usage rule is to be used to encrypt
the Content Key Context defined by the rule.

6.4.3. Secure Content Key Delivery to Several Entities§

6.4.4. Content Key Delivery with Usage Rules§

6.4.4.1. Introduction§

Figure 6 Content Key delivery with key usage rules.

This use case adds information to Content Keys that specifies how they are to be
mapped to labelled Content Key Contexts, where the labeling system has been pre-
agreed between the producer and consumer of the CPIX document.

For example, labels might be the IDs of DASH adaptation sets or, for more compatibility
with formats other than DASH, names of media files/directories or input values for
arbitrary custom logic.

The recipient will use the added information to map Content Keys to Content Key
Contexts defined by labels.

This use case adds information to Content Keys that specifies how they are to be
mapped to key periods, a.k.a. crypto-periods for Content Key rotation. The mapping is
accomplished by defining key periods and mapping Content Keys to any number of key
periods.

The recipient will use the added information to map Content Keys to time periods.

This use case associates policy-based information with Content Keys, constraining how
they define Content Key Contexts. Policy based filters are, for example, video or audio
stream attributes and bitrate ranges.

The recipient will use the added information to map Content Keys to Content Key
Contexts according to the defined policy.

Having no policy in some dimension means that the Content Key Context is not
constrained in that dimension. For example, if the HDR policy is not specified, the

6.4.4.2. Label Filter§

6.4.4.3. Key Period Filter§

6.4.4.4. Policy-based Filters§

Content Key Context may include both HDR and non-HDR media.

This use case is an extension of § 6.4.2 Content Key Delivery to One Entity and is
compatible with § 6.4.4 Content Key Delivery with Usage Rules.

This use case adds DRM Signaling information to each Content Key. The recipient may
embed this signaling into the data streams it generates.

Figure 7 Content Key Delivery with DRM Signaling.

The primary data model carried by content protection information document needs
then to include zero to many DRM system signaling elements, each element consisting
of a DRM system ID, some signaling information such as for example signaling data for a
DASH manifest or an HLS playlist or signaling data for an ISOBMFF file.

The use of 3rd party extensions enable the inclusion of DRM system signaling in forms
suitable for other media delivery technologies.

The recipient may use the part of signaling data that it understands and knows how to
embed into its output, ignoring signaling data that targets other media delivery
technologies.

This use case illustrates the usage of the content protection information document in a
realistic workflow comprising multiple cooperating components that require a
standardized data format for content protection information exchange.

6.4.5. Content Key Delivery with DRM Signaling§

6.4.6. Incremental Update and Extension of the Document§

Figure 8 Incremental update and extension of the document.

Each component participating in such a workflow is the authority on a particular aspect.
For example, the Key Server manages Content Keys and usage rules and may define the
key periods, the DRM System knows how to define the correct DRM Signaling and the
Encryption Engine might want to inform the Packager what representations the Content
Keys actually got mapped to (the Packager might not have enough information to
resolve usage rules based on detailed metadata, so the Encryption Engine could define a
new set of usage rules that are simple enough for the Packager to understand, e.g. by
making use of label filters).

As the document travels in the workflow, each component adds the elements containing
the content protection items it generates (key periods, usage rules, Content Keys, DRM
Signaling, etc), making it suitable for the next component that will make use of it. After
each modification, the added elements may be signed to maintain a chain of trust on
each set of elements individually. The document in its entirety may also be signed to
authenticate the document as a whole.

Note that in the above example, the Content Key material itself is encrypted for the
Encryption Engine. Despite the fact that many other components participate in the
workflow, they do not have access to Content Keys.

This use case is for the bulk transfer of Content Keys in one document. Each Content
Key is associated to a different media asset, hence within the document, several media
assets can be referenced. Limiting the number of documents to exchange allows for
simpler transfer between entities of Content Keys and associated information such as
usage rules and DRM signaling.

Figure 9 Bulk transfer of Content Keys referencing different assets.

Some DRM systems enable the use of hierarchy of keys, where the set of keys delivered
to clients (root keys) within licenses differs from the set of keys used to encrypt Content
(leaf keys). Doing so enables DRM systems to separate content encryption and
commercial offer management.

Packaging content that uses a key hierarchy requires the Packager to know:

To fulfill this use case, CPIX enables the above data to be exchanged.

Some DRM systems enable the use of hierarchical keys, where the set of keys delivered
to clients (root keys) differs from the set of keys used to encrypt Content (leaf keys).

When, for example, key creation is not a function of the license server, creating licenses
in scenarios that use hierarchical keys requires the license server to know the root keys.
CPIX enables root keys to be delivered to license servers.

6.4.7. Multiple Content Keys Delivery for Multiples Assets§

6.4.8. Content Key Hierarchy Delivery for Content Packaging§

The leaf keys.

The KIDs of the root keys (but not the root keys themselves).

DRM system signaling data for both root and leaf keys.

6.4.9. Root Key Delivery for License Server Operation§

The exchange of root keys is technically identical to the exchange of non-hierarchical
Content Keys as described in § 6.4.2 Content Key Delivery to One Entity. It is expected
that the recipient of a CPIX document in this use case is already aware of the
hierarchical nature of the keys within, without any signaling in the CPIX document.

There are many workflows that are possible, depending on which entities provide
information in the CPIX document, and which entities consume that information. Two
simple single-producer, single-consumer examples are illustrated below:

Figure 10 Encryptor Producer.

Figure 11 Encryptor Consumer.

All workflows require that content protection information and Content Keys be
exchanged between two or more entities. In the examples above the entities are the
Encryptor and DRM System:

6.5. Workflow Examples§

6.5.1. Encryptor Producer and Encryptor Consumer§

6.5.1.1. Introduction§

The Encryptor Producer example allows, in this case, the Encryptor to generate
Content Keys and to push them to one or many DRM systems. The Encryptor could
expect to receive from the DRM systems some DRM Signaling.

The Encryptor Consumer example allows the Encryptor to pull Content Keys and
DRM Signaling from a DRM system. In this case, Content Keys are generated by the
DRM System.

The document allows supporting both workflows above in addition to other workflows
not explicitly described here.

Before exchanging key information in a secure manner, the entities which exchange key
material musshallt know about each other and share public keys so that one entity
could encrypt data and the other entity could decrypt it. This important step of Trust
establishment is out of the scope of this document.

This clause shows a possible workflow for securing the exchange of the key information
between entities when the Encryptor generates the Content Keys. In this example, the
Encryptor is the entity which is taking responsibility for generating the Content Keys,
protecting them and pushing them to the DRM Systems.

All these steps are summarized in the figure below.

6.5.1.2. Encryptor Producer§

The first step is the Trust establishment. Public keys shall be exchanged between
two or more entities (the Encryptors and the DRM Systems) prior exchanges.

Once the Trust is established and the necessary associated key material is shared
between entities, Content Keys can be exchanged. The Encryptor is encrypting these
keys using DRM Systems public keys. The DRM Systems can decrypt using their own
private key.

The Encryptor provides crypto material required to uniquely identify the entity
capable of decrypting the media.

Figure 12 Encryptor Producer example steps.

This clause shows a possible workflow for securing the exchange of the key information
between entities when the DRM System generates the Content Keys. In this model, the
Encryptor can pull documents directly from a DRM System. In this case, the DRM System
is generating Content Keys and is encrypting them for a secure delivery to the Encryptor.

All these steps are summarized in the figure below.

6.5.1.3. Encryptor Consumer§

As in the case of the Encryptor Producer model, the first step is the Trust
establishment. Public keys shall be exchanged between two or more entities (the
Encryptors and the DRM System) prior exchanges.

The DRM System will use the public key of the Encryptor to encrypt keys to be
inserted in the document and will send it to Encryptor.

The Encryptor can decrypt the Content Keys using its private key.

Figure 13 Encryptor Consumer example steps.

This clause illustrates that it is possible to have more complex workflows than those
previously illustrated. In one such example, for DASH content, a media packager might
define the types of streams in the presentation, an Encryptor might generate the
Content Keys, a DRM System might generate other DRM Signaling, An Encryptor and an
MPD Generator might be the consumers of the final document. In such workflows, the
document gets passed from entity to entity in sequence, with each entity adding top-
level elements, and recording the update.

Figure 14 Multiple Producers example.

6.5.2. Multiple Producers§

All these steps are summarized in the figure below.

Figure 15 Multiple Producers example steps.

The first step is the Trust establishment. Public keys shall be exchanged between
two or more entities prior to exchanges.

Once the Trust is established and the necessary associated key material is shared
between entities, Content Keys can be exchanged.

The Packager provides identification of the receivers and the various stream
encoding criteria (usage rules) in version 1 of the document.

The Encryptor adds key information in version 2 of the document. These elements
only contain Keys and no DRM information.

The DRM System imports the Content Keys stored in the document, and adds its
own information in version 3 of the document, which is the finalized version.

The Encryptor extracts content protection information from the document to be
embedded in the media (e.g. pssh boxes).

The MPD Generator also extracts content protection related information from the
document to be embedded in the MPD document (e.g. pssh boxes, key IDs).

This clause describes the Content Protection Information eXchange (CPIX) format to
provide a framework to securely exchange Content Key(s) and DRM Signaling between
different system entities (see clause § 6 Use Cases and Requirements). This is an XML
file. This clause describes in details elements part of the schema.

It shall be possible to exchange Content Key(s) and DRM Signaling between entities
involved in Content preparation workflows, an example of such interface where the
exchange shall be possible is between a DRM system and the encryption engine.

It shall be possible that the manifest generator receives DRM Signaling for several DRM
systems and/or content formats.

Update of Content Key(s) shall be possible at periodic time or based on events. Some
period of time could be in the clear (no encryption).

It shall allow generating MPD conformant to [DASHIF-IOPv5p6].

Content Key(s) shall be secured over the interface.

Entities exchanging content protection information should be authenticated.

The structure is articulated around Content Keys and the accompanying material. The
document contains all the information required for allowing any entitled entity to get
access to or add in the Content Keys and either consume or add material, such as time
constraint, DRM information to the CPIX document. The same XML file can be shared
between several receiving entities. Hence, each one shall be able to decrypt keys and
shall be properly identified.

Taking this into account, the CPIX document contains lists of elements:

7. XSD Schema Definition§

7.1. Introduction§

7.2. Requirements§

7.3. Structure Overview§

DeliveryDataList : This list contains instances of DeliveryData , each of which describes
an entity entitled to decrypt Content Keys contained in the CPIX document.

The Content Keys can be encrypted inside the XML file using the public keys of the
recipients, identified in the DeliveryData elements. The XML file also allows storing the
Content Keys in the clear, in which case the security of the Content Keys is contingent on
the security of the communication channel used to deliver the CPIX document to the
recipients.

The figure below shows the first elements and a high-level view of the structure.
Detailed description of the structure is given in the following clauses.

ContentKeyList : This list contains instances of ContentKey , each of which contains a
Content Key used for encrypting media.

DRMSystemList : This list contains instances of DRMSystem , each of which contains the
signaling data to associate one DRM system with one Content Key.

ContentKeyPeriodList : This list contains instances of ContentKeyPeriod , each of which
defines a time period that may be referenced by the key period filters included in
Content Key usage rules.

ContentKeyUsageRuleList : This list contains instances of ContentKeyUsageRule , which
maps a Content Key to one or more Content Key Contexts.

UpdateHistoryItemList : This list contains instances of UpdateHistoryItem , each of which
contains an update version number and an identifier of the entity which produced
the update. Other elements in the document are linked to a specific update by
update version number (via the @updateVersion attribute).

Signature : Each instance of this element contains a digital signature [XMLDSIG-CORE]
over either the entire document or a subset of XML elements.

Figure 16 Content Protection Information Exchange Format high level view.

In this clause, the following conventions are used:

The XSD schema for this model is provided here.

In addition to types defined in this document that come with the prefix cpix: , , the CPIX
data model references types defined in [XMLSCHEMA11-2], [RFC6030], [XMLDSIG-CORE]
and [XMLENC-CORE]. External data types are prefixed with xs: , pskc: , ds: and xenc:

respectively.

The root element that carries the Content Protection Information for a set of media
assets.

An identifier for the CPIX document. It is recommended to use an identifier that is
unique within the scope in which this file is published.

7.4. Hierarchical Data Model§

7.4.1. Introduction§

Element names are in PascalCase and the number of allowed instances is defined by
(min...max) where N for max means unbounded.

Attribute names are in camelCase preceded with an @ and the use of an attribute is
defined as: M=Mandatory, O=Optional, OD=Optional with Default Value,
CM=Conditionally Mandatory. Attributes may be in any order.

7.4.2. CPIX Element§

@id (O, xs:ID)

https://dashif.org/guidelines/others/#dash-if-content-protection-information-exchange-format

An identifier for the asset or content that is protected by the keys carried in this
CPIX document. It is recommended to use an identifier that is unique within the
scope in which this file is published. It is mutually exclusive with the attribute
@contentId defined in the ContentKey element.

A name for the presentation.

A version for the CPIX document. The value shall reference a published version of
the CPIX guidelines and be structured as majorVersion.minorVersion. This
specification describes version 2.4.

If the CPIX client knows that it doesn’t support all the features of a given CPIX
version, it needs to behave according to the recommendations of the API used to
exchange the CPIX document.

A container for DeliveryData elements. If not present, Content Keys in the document
are delivered in the clear, without encryption.

A container for ContentKey elements.

A container for DRMSystem elements. If not present, the document does not contain
any DRM system signaling data.

A container for ContentKeyPeriod elements.

A container for ContentKeyUsageRule elements. If not present, the document does
not define Content Key Contexts and an external mechanism is required for
synchronizing the content creation workflow.

A container for UpdateHistoryItem elements.

Digital signatures as defined in [XMLDSIG-CORE]. Each signature signs either the full
document or any set of elements within the CPIX document. Every digital signature
shall contain an X.509 certificate identifying the signer and the associated public
key.

@contentId (O, xs:string)

@name (O, xs:string)

@version (O, xs:string)

DeliveryDataList (0...1, cpix:DeliveryDataList)

ContentKeyList (0...1, cpix:ContentKeyList)

DRMSystemList (0...1, cpix:DRMSystemList)

ContentKeyPeriodList (0...1, cpix:ContentKeyPeriodList)

ContentKeyUsageRuleList (0...1, cpix:ContentKeyUsageRuleList)

UpdateHistoryItemList (0...1, cpix:UpdateHistoryItemList)

Signature (0...N, ds:Signature)

Figure 17 CPIX element.

An identifier for the element. It is recommended to use an identifier that is unique
within the scope in which this CPIX document is published.

Matches the @updateVersion attribute of the UpdateHistoryItem element providing
details on when this element was added or updated.

Contains the required information allowing defining which entities can get access to
the Content Keys delivered in this document.

7.4.3. DeliveryDataList Element§

@id (O, xs:ID)

@updateVersion (O, xs:integer)

DeliveryData (1...N, cpix:DeliveryData)

There is one DeliveryData element per entity capable of accessing encrypted Content
Keys stored in this document. If this element is not present, then the Content Keys
are in the clear in the file.

Figure 18 DeliveryDataList element.

An identifier for the element. It is recommended to use an identifier that is unique
within the scope in which this CPIX document is published.

Matches the @updateVersion attribute of the UpdateHistoryItem element providing
details on when this element was added or updated.

Name of the Delivery Data.

Contains an X.509 certificate that identifies the intended recipient and the public
key that was used to encrypt the Document Key.

Refer to § 8.1 Key Encryption and Authentication in the CPIX Document for a
description of the key management within the CPIX document.

Contains the keys that are used for encrypting the Content Key stored in ContentKey
elements.

Identifies the MAC algorithm and contains the MAC key used to implement
authenticated encryption of Content Keys. The key in the MACKey element is

7.4.4. DeliveryData Element§

@id (O, xs:ID)

@updateVersion (O, xs:integer)

@name (O, xs:string)

DeliveryKey (1, ds:KeyInfoType)

DocumentKey (1...N, cpix:DocumentKeyType)

MACMethod (0...1, pskc:MACMethodType)

encrypted using the public key listed in the recipient’s X.509 certificate from the
DeliveryKey element.

Refer to § 8.1 Key Encryption and Authentication in the CPIX Document for a
description of the key management within the CPIX document.

A description of the element.

The name of the entity generating this CPIX document.

The contact information, such as an email address, of the entity generating this CPIX
document.

The name of the entity capable of decrypting Content Keys in this CPIX document.

Figure 19 DeliveryData element.

Description (0...1, xs:string)

SendingEntity (0...1, xs:string)

SenderPointOfContact (0...1, xs:string)

ReceivingEntity (0...1, xs:string)

An identifier for the element. It is recommended to use an identifier that is unique
within the scope in which this CPIX document is published.

Matches the @kid attribute(s) of the referenced ContentKey elements. These
referenced Content Keys in the ContentKey element(s) are encrypted with the
Document Key stored under the Data element. When a Document Key is used for
encrypting several Content Keys, this attribute shall store a space-delimited list of
those different @kid values.

If there are several DocumentKey elements, this attribute shall be present. If there is
only one DocumentKey element, this attribute may not be present and, in this case,
the Document Key encrypts all Content Keys.

Contains the Document Key either in the clear or encrypted. The Document Keys
are encrypted using the public key listed in the recipient’s X.509 certificate from the
DeliveryKey element.

Refer to § 8.1 Key Encryption and Authentication in the CPIX Document for a
description of the key management within the CPIX document.

Figure 20 DocumentKey element.

An identifier for the element. It is recommended to use an identifier that is unique
within the scope in which this CPIX document is published.

7.4.5. DocumentKey Element§

@id (O, xs:ID)

@encryptsKey (O, cpix:UUID)

Data (1, pskc:KeyDataType)

7.4.6. ContentKeyList Element§

@id (O, xs:ID)

Matches the @updateVersion attribute of the UpdateHistoryItem element providing
details on when this element was added or updated.

Contains all information on a Content Key used to encrypt one or more Content Key
Contexts.

Figure 21 ContentKeyList element.

An identifier for the element. It is recommended to use an identifier that is unique
within the scope in which this CPIX document is published.

An identifier for the asset or content that is protected by this key. It is mutually
exclusive with the attribute @contentId defined in the CPIX element.

When present, every ContentKey element may have different or identical value. This
attribute shall not be present if the @dependsOnKey attribute is present. In a key
hierarchy, the root key defines this value for all keys in the hierarchy.

The use of this attribute is recommended only when exchanging multiples content
keys that do not share the same @contentId value. That allows reducing the number
of documents that need to be exchanged. See § 6.4.7 Multiple Content Keys Delivery
for Multiples Assets for additional details.

The unique identifier of the Content Key. It shall be formatted as defined in
[MPEGCENC], clause 11.2.

The IV associated with the Content Key. This is a 128-bit value in binary format,
base64-encoded. This is the value of Constant IV defined in [MPEGCENC] or of the IV
attribute under #EXT-X-KEY or #EXT-X-SESSION-KEY defined in [HLS] if content is
delivered in HLS format.

Use of this attribute is not recommended except for compatibility with some DRM
systems that explicitly need it, meaning when a Constant IV needs to be provided
within a DRM license.

@updateVersion (O, xs:integer)

ContentKey (1...N, cpix:ContentKey)

7.4.7. ContentKey Element§

@id (O, xs:ID)

@contentId (O, xs:string)

@kid (M, cpix:UUIDType)

@explicitIV (O, xs:base64binary)

This attribute signals that the Content Key is a leaf key in a key hierarchy. It
references the @kid attribute of another ContentKey element describing the root
key.

The referenced key shall not be a leaf key.

If this attribute is not specified, the Content Key is either a root key or does not
participate in a key hierarchy. The CPIX document format does not make a
distinction between these two cases.

Note all DRMs support key hierarchy, see § 8.2 Key Rotation Support for more
details.

The encryption scheme that the content key is intended to be used with. When
present, the value shall be a 4-character Common Encryption protection scheme
name as defined by [MPEGCENC] or one of the encryption method defined in [HLS].
If the attribute is omitted then content may be encrypted using any encryption
scheme.

This attribute shall not be present if the @dependsOnKey attribute is present. In a
key hierarchy, the root key defines the encryption scheme for all keys in the
hierarchy.

Contains the HDCP information for this Content Key.

This attribute shall not be present if the @dependsOnKey attribute is present. In a
key hierarchy, the root key defines the HDCP properties for all keys in the hierarchy.

Contains the Content Key either in the clear or encrypted. If encrypted, the Content
Key is encrypted with a key that is under a DocumentKey element.

Refer to § 8.1 Key Encryption and Authentication in the CPIX Document for a
description of the key management within the CPIX document.

Figure 22 ContentKey element.

@dependsOnKey (O, cpix:UUIDType)

@commonEncryptionScheme (O, xs:string)

HDCPData (0...1, cpix:HDCPData)

Data (0...1, pskc:KeyDataType)

This attribute specifies the value of the HDCP-LEVEL attribute of the EXT-X-STREAM-INF

tag in the multiVariant playlist. Its format is as specified in clause 4.4.6.2 of [HLS].

This attribute has meaning only when an HLS playlist is created for the media
content.

This is the full well-formed standalone XML fragment to be added to the DASH
manifest for the HDCP OutputProtection element for this Content Key. This is UTF-8
text without a byte order mark. See in [DASHIF-IOPv5p6], clause 7.4 for more
details.

This element has meaning only when a DASH manifest is created for the media
content.

Figure 23 ContentKey element.

An identifier for the element. It is recommended to use an identifier that is unique
within the scope in which this CPIX document is published.

Matches the @updateVersion attribute of the UpdateHistoryItem element providing
details on when this element was added or updated.

DRM Signaling of a DRM system associated with a Content Key.

Figure 24 DRMSystemList element.

This element contains all information on a DRM system that can be used for retrieving
licenses for getting access to content. This specification defines elements for DRM

7.4.8. HDCPData Element§

@HLSHDCPLevel (O, xs:string)

HDCPOutputProtectionData (0...1, xs:base64binary)

7.4.9. DRMSystemList Element§

@id (O, xs:ID)

@updateVersion (O, xs:integer)

DRMSystem (1...N, cpix:DRMSystem)

7.4.10. DRMSystem Element§

system signaling in DASH, ISOBMFF, Smooth Streaming and HLS. Implementations may
extend CPIX documents with additional elements to provide DRM system signaling
information for other formats.

The DRM system signaling data in DRMSystem elements often contains the protection
scheme identifier in a DRM or streaming protocol system specific format. Values in
DRMSystem elements shall be aligned with the values in @commonEncryptionScheme
attributes of the ContentKey elements.

An identifier for the element. It is recommended to use an identifier that is unique
within the scope in which this CPIX document is published.

Matches the @updateVersion attribute of the UpdateHistoryItem element providing
details on when this element was added or updated.

This is the unique identifier of the DRM system. Values are avaialble on dashif.org.

Matches the @kid attribute of the ContentKey this element references.

This is a human-readable name and version of the DRM system. This can be used in
a MPD as the value for the @value attribute of the ContentProtection element.

This attribute specifies, for the DRM identified by the @systemId value, the value to
be added in the ALLOWED-CPC attribute of the EXT-X-STREAM-INF tag in the
multiVariant playlist. Its format is as specified in clause 4.4.6.2 of [HLS].

The final value of the ALLOWED-CPC is the concatenation, each separated by a
comma, of all @HLSAllowedCPC values present in the CPIX document, except if
ContentKey elements have a @contentId value. In this latter case, the concatenation
is limited to those that have a referenced ContentKey element with the same
@contentId value.

This attribute has meaning only when an HLS playlist is created for the media
content.

If the referenced ContentKey element includes a @dependsOnKey attribute, this
element shall not be used.

This is the full pssh box that should be added to ISOBMFF files encrypted with the
referenced Content Key.

@id (O, xs:ID)

@updateVersion (O, xs:integer)

@systemId (M, cpix:UUIDType)

@kid (M, cpix:UUIDType)

@name (O, xs:string)

@HLSAllowedCPC (O, xs:string)

PSSH (0...1, xs:base64binary)

https://dashif.org/identifiers/content_protection/

If the referenced ContentKey element includes a @dependsOnKey attribute, the value
shall be inserted under the moof box.

If the referenced ContentKey element does not include a @dependsOnKey attribute,
the value may be inserted under the moov box or the moof box. In this case, see
[DASHIF-IOPv5p6], clause 6 for more details.

This is the full well-formed standalone XML fragment to be added to the DASH
manifest under the ContentProtection element for this DRM system. This is UTF-8
text without a byte order mark. An example of such data is the W3C signaling
defined in [DASHIF-IOPv5p6], in this case, all dashif:xxx elements are children of the
ContentProtection element and are therefore provided in this element.

This element has meaning only when a DASH manifest is created for the media
content.

If the referenced ContentKey element includes a @dependsOnKey attribute, this
element shall not be used.

If the referenced ContentKey element does not include a @dependsOnKey attribute,
the value may be added under the ContentProtection element for this DRM system.

This is the full data including the #EXT-X-KEY or #EXT-X-SESSION-KEY tag of a HLS
playlist [HLS] depending on the destination of the data (see § 7.4.12
HLSSignalingData Element). This may contain multiple lines allowing to add lines
with proprietary tags and values. This is UTF-8 text without a byte order mark.

This element shall not be used if the referenced Content Key is a leaf key in a key
hierarchy.

This element has meaning only when a HLS playlist is created for the media content.

If the referenced ContentKey element includes a @dependsOnKey attribute, this
element shall not be present.

This is the inner text of the ProtectionHeader element to be added to the Smooth
Streaming manifest for this DRM system. This is UTF-8 text without a byte order
mark.

This element has meaning only when a Smooth Streaming manifest is created for
the media content.

If the referenced ContentKey element includes a @dependsOnKey attribute, this
element shall not be present.

ContentProtectionData (0...1, cpix:ContentProtectionData)

HLSSignalingData (0...2, cpix:HLSSignalingData)

SmoothStreamingProtectionHeaderData (0...1, xs:string)

Additional child elements may be present containing signaling data for other media
formats. Such elements shall appear after any elements defined here.

Figure 25 DRMSystem element.

The ContentProtectionData shall be base64 encoded text. It has an optional attribute
allowing to define the robustness level that is expected for this DRM.

The value of this attribute is DRM specific. It announces what robustness level is
expected from the DRM system for the representations that are encrypted by the
referenced Content Key.

This is the value of the @robustness attribute of the ContentProtection element in the
DASH manifest for this DRM system.

Figure 26 DRMSystem element.

The HLSSignalingData shall be base64 encoded text. It has an optional attribute allowing
to define where this data is to be placed, either in the multiVariant playlist or in the
media playlist. It allows having different proprietary signaling in these locations. In a
DRMSystem element, every HLSSignalingData shall have a different @playlist value if
present. If @playlist is not present then the HLSSignalingData goes in the media playlist
and there is no signaling in the multiVariant playlist (in this case, there is only one
HLSSignalingData element in the DRMSystem element).

Specifies the destination of the data carried by this element. It can only have two
values multiVariant and media . There is a uniqueness rule for this attribute. If two
elements are added under a DRMSystem element, they shall not have the same
@playlist value.

7.4.11. ContentProtectionData Element§

@robustness (O, xs:string)

7.4.12. HLSSignalingData Element§

@playlist (O, restricted xs:string)

Figure 27 HLSSignalingData element.

An identifier for the element. It is recommended to use an identifier that is unique
within the scope in which this CPIX document is published.

Matches the @updateVersion attribute of the UpdateHistoryItem element providing
details on when this element was added or updated.

For every Content Key, ContentKeyPeriod elements cover non ovelapping periods of
time. The concatenation of all period of times may not fully cover the Content as
some parts may be in the clear.

Figure 28 ContentKeyPeriodList element.

An identifier for the element. It is recommended to use an identifier that is unique
within the scope in which this CPIX document is published.

Numerical index for the key period. It shall increase. When reaching MAX_UINT32,
the value rolls over.

String identifier for the key period. As an example, the value of this attribute may be
used to match a SCTE-35 segmentation_event_id , in this case, it allows matching this
content key to a specific program.

For Live content, this is the wall clock time for the start time for the period.

For Live content, this is the wall clock time for the end time for the period. Mutually
exclusive with @duration .

7.4.13. ContentKeyPeriodList Element§

@id (O, xs:ID)

@updateVersion (O, xs:integer)

ContentKeyPeriod (1...N, cpix:ContentKeyPeriod)

7.4.14. ContentKeyPeriod Element§

@id (O, xs:ID)

@index (O, xs:integer)

@label (O, xs:string)

@start (O, xs:dateTime)

@end (O, xs:dateTime)

For VOD content, this is the start time for the period.

For VOD content, this is the end time for the period. Mutually exclusive with
@duration .

For VOD and Live content, this is the duration for the period. Mutually exclusive with
@end and @endOffset .

The valid combinations of attributes are:

If none of these combinations is specified, then the encryptor is determining the key
period boundaries internally, and other components do not need to be aware of them.
In this case, the key periods are referenced simply by a sequence number (@index) or a
string index (@label). An example of this use of @index would be an encryptor which
rotates the keys once an hour, and not necessarily at specific times.

Figure 29 ContentKeyPeriod element.

An identifier for the element. It is recommended to use an identifier that is unique
within the scope in which this CPIX document is published.

Matches the @updateVersion attribute of the UpdateHistoryItem element providing
details on when this element was added or updated.

@startOffset (O, xs:duration)

@endOffset (O, xs:duration)

@duration (O, xs:duration)

@start and @end are present, the interval is defined by [@start , @end).

@start and @duration are present, the interval is defined by [@start ,
@start+@duration).

@startOffset and @endOffset are present, the interval is defined by [@startOffset ,
@endOffset).

@startOffset and @duration are present, the interval is defined by [@startOffset ,
@startOffset+@duration).

7.4.15. ContentKeyUsageRuleList Element§

@id (O, xs:ID)

@updateVersion (O, xs:integer)

A rule which defines a Content Key Context.

Figure 30 ContentKeyUsageRuleList element.

An identifier for the element. It is recommended to use an identifier that is unique
within the scope in which this CPIX document is published.

Matches the @kid attribute of the ContentKey this element references.

In hierarchical key scenarios, this shall reference a leaf key, not a root key.

Specifies the type of media track which corresponds to the streams which match
the rules defined in this element.

Examples of types for the media track might be UHD, UHD+HFR. See § 7.4.17.3
LabelFilter Element for more details.

Defines a period of time constraints for the Content Key Context.

This filter links ContentKey and ContentKeyPeriod elements.

Defines a label association for the Content Key Context.

Defines video constraints to be associated with the Content Key Context.

This filter can only be used on media content of type video.

Defines audio constraints to be associated with the Content Key Context.

This filter can only be used on media content of type audio.

Defines bitrate constraints to be associated with the Content Key Context.

Additional child elements may be present containing proprietary filters. Such elements
shall appear after any elements defined here.

ContentKeyUsageRule (1...N, cpix:ContentKeyUsageRule)

7.4.16. ContentKeyUsageRule Element§

@id (O, xs:ID)

@kid (M, cpix:UUIDType)

@intendedTrackType (O, xs:string)

KeyPeriodFilter (0...N, cpix:KeyPeriodFilter)

LabelFilter (0...N, cpix:LabelFilter)

VideoFilter (0...N, cpix:VideoFilter)

AudioFilter (0...N, cpix:AudioFilter)

BitrateFilter (0...N, cpix:BitrateFilter)

Figure 31 ContentKeyUsageRule element.

There can be several filters defined within a single ContentKeyUsageRule . In this case, all
rules apply identically, the entity generating the ContentKeyUsageRule element or adding
a new rule is responsible for ensuring that they do not contradict each other. A set of
rules that would match multiple Content Keys to a single Content Key Context is invalid.

If more than one of a particular type of filter (e.g. KeyPeriodFilter) is present within a
ContentKeyUsageRule , then they are first aggregated with a logical OR operator. After
that, different types of filters are aggregated with a logical AND operator. For example, a
rule that defines a label filter for stream-1, a label filter for steam-2 and a video filter
would be matched as (stream-1 OR stream-2) AND video.

A scenario where multiple Content Keys can be mapped to a single Content Key Context
shall be considered invalid. A CPIX document shall always match exactly zero or one
Content Keys to any Content Key Context.

A usage rule shall be considered unusable if it contains a child element whose meaning
is unknown (i.e. a filter of an unknown type) or which cannot be processed for any other
reason (e.g. @minPixels in the VideoFilter element is defined but the implementation
does not know the pixel count of the video samples). An entity interpreting the
ContentKeyUsageRule element shall not perform Content Key(s) mapping to Content Key
Contexts if any unusable usage rules exist. An entity that is not interpreting the
ContentKeyUsageRule element (doing, for example, only storage of the CPIX document for
latter distribution to another entity) can perform any processing on the document.

Processing of the Content Key(s) referenced by any unusable usage rules shall not be
performed. The usable part of the document can be processed normally.

There can be many different sources for defining usage rules, for example, they can be
the result of a right holder requirement or a decision to encrypt separately SD, HD and
UHD tracks. The CPIX document does not keep track of the source of these rules, it only
defines how to maps Content Keys to tracks.

7.4.17. Usage Rules Filters§

7.4.17.1. Introduction§

This references a ContentKeyPeriod element by @id . The filter will only match
samples that belong to the referenced key period.

Figure 32 KeyPeriodFilter element.

The filter will only match samples that carry a matching label. The exact meaning of
labels is implementation-defined and shall be agreed upon in advance by the
producer and consumer of the CPIX document.

Figure 33 LabelFilter element.

The @label attribute is meant for triggering a particular ContentKeyUsageRule by using
pre-agreed upon label strings. Its value may or may not correspond to media track
types. One example is a label such as UHD that can be used to match the corresponding
ContentKeyUsageRule element when used as an input or selector for a content encryptor,
media packager, MPD generator or license service to select a specific Content Key,
populate the ContentProtection element, or include the corresponding key in a content
license. Another example is if there is a previous agreement defined outside of a CPIX
document that "blue tracks" are encrypted with the Content Key 1234 and "green tracks"
are encrypted with the Content Key 5678. The labels can be used in this case to identify
the suitable tracks (without expressing the specifics of the agreement itself).

In contrast, the @intendedTrackType attribute of ContentKeyUsageRule is used to assign a
track type to the media streams which match the filters. The value of the string may not
be pre-agreed between the various entities making use of the CPIX document. Said
differently, the @intendedTrackType attribute is a metadata that states business logic. For
example, a rule can be that all low resolutions streams are encrypted with the same
Content Key. The value lowRes matches this rule. It has no function in defining what
Content Key are matched to what tracks, it simply acts as a label to allow business logic

7.4.17.2. KeyPeriodFilter Element§

@periodId (M, xs:IDREF)

7.4.17.3. LabelFilter Element§

@label (M, xs:string)

to say authorize the use of lowRes Content Key and then a CPIX processor can find the
rules that matches the right Content Keys for lowRes and thereby associated with low
resolution tracks.

If a specific key is to be used for more than one type of track (this is not recommended),
then there ought to be multiple ContentKeyUsageRule elements, one for each track type,
even if they all reference the same Content Key with the same @kid .

If present, even without any attributes, the filter will only match video samples.

The filter will only match video samples that contain at least this number of pixels
(encoded width x height before considering pixel/sample aspect ratio). The default
value is 0 (zero).

The filter will not match video samples that contain more than this number of pixels
(encoded width x height before considering pixel/sample aspect ratio). The default
value is MAX_UINT32.

Boolean value indicating whether the matching video stream is encoded in HDR.

Boolean value indicating whether the matching video stream is encoded in WCG.

Minimum nominal number of frames per second for the video stream. For
interlaced video, this is half the number of fields per second.

Maximum nominal number of frames per second for the video stream. For
interlaced video, this is half the number of fields per second.

When @minPixels and @maxPixels are present, the interval is defined by [@minPixels ,
@maxPixels], meaning that the filter is used for content with video samples that contain
@minPixels pixels and is used for content with video samples that contain @maxPixels
pixels.

When @minFps and @maxFps are present, the interval is defined by (@minFps , @maxFps],
meaning that the filter is not used for content with nominal FPS equal to @minFps but is
used for content with nominal FPS equal to @maxFps .

7.4.17.4. VideoFilter Element§

@minPixels (OD, xs:integer)

@maxPixels (OD, xs:integer)

@hdr (O, xs:boolean)

@wcg (O, xs:boolean)

@minFps (O, xs:integer)

@maxFps (O, xs:integer)

Figure 34 VideoFilter element.

If present, even without any attributes, the filter will only match audio samples.

The filter will only match audio samples that contain at least this number of
channels. The default value is 0 (zero).

The filter will not match audio samples that contain more than this number of
channels. The default value is MAX_UINT32.

When @minChannels and @maxChannels are present, the interval is defined by
[@minChannels , @maxChannels], meaning that the filter is used for content with audio
samples that have @minChannels audio channels and is used for content with audio
samples that have @maxChannels audio channels.

Figure 35 AudioFilter element.

The filter will only match samples from streams with a nominal bitrate in b/s of at
least this value. The default value is 0 (zero).

The filter will not match samples from streams with a nominal bitrate in b/s that
exceeds this value. The default value is MAX_UINT32.

At least one of @minBitrate and @maxBitrate shall be specified.

When @minBitrate and @maxBitrate are present, the interval is defined by [@minBitrate ,
@maxBitrate], meaning that the filter is used for content with bitrate of @minBitrate and
is used for content with bitrate of @maxBitrate .

7.4.17.5. AudioFilter Element§

@minChannels (OD, xs:integer)

@maxChannels (OD, xs:integer)

7.4.17.6. BitrateFilter Element§

@minBitrate (OD, xs:integer)

@maxBitrate (OD, xs:integer)

Figure 36 BitrateFilter element.

An identifier for the element. It is recommended to use an identifier that is unique
within the scope in which this CPIX document is published.

It contains metadata about an update made to the CPIX document. There should be
one entry for each instance in which an entity updated the document.

Figure 37 UpdateHistoryItemList element.

An identifier for the element. It is recommended to use an identifier that is unique
within the scope in which this CPIX document is published.

The is the ID referenced by other elements in the document. It is strongly
recommended to use an identifier that is unique within the scope in which this CPIX
document is published.

This is the version number for the document update. Each UpdateHistoryItem
element contains a unique value for this attribute. It is a monotonically increasing
number, starting at value 1.

This is the identifier for the entity which performed the document update.

This is the date and time when the document update was performed.

Figure 38 UpdateHistoryItem element.

7.4.18. UpdateHistoryItemList Element§

@id (O, xs:ID)

UpdateHistoryItem (1...N, cpix:UpdateHistoryItem)

7.4.19. UpdateHistoryItem Element§

@id (O, xs:ID)

@updateVersion (M, xs:integer)

@index (M, xs:string)

@source (M, xs:string)

@date (M, xs:dateTime)

The CPIX document allows exchanging Content Keys in the clear but this is not a
recommended method as it relies on the security of the communication mechanism
used to deliver the CPIX document to the recipients, which may not be sufficient to
adequately protect the Content Keys.

Content Keys can be delivered encrypted within the document itself and in this case, a
multi-level structure of encryption keys is used for an efficient encryption avoiding
duplication of encrypted content and expensive encryption methods. This clause
describes the mechanism that shall be used when encryption and authentication of the
Content Keys in the document is used.

The document contains the following keys for encrypting Content Keys:

Each ContentKey element contains one Content Key that is used for encrypting an
asset or crypto period of an asset or that acts as a dependency for the use of other
Content Keys (when a key hierarchy is used). Typically, for Common Encryption as
supported in [DASHIF-IOPv5p6], these keys are 128-bit keys used with the AES
cipher.

For every CPIX document, one or several Document Keys may be created. It is used
for encrypting Content Keys. These Document Keys are 256-bit key and the
encryption algorithm used for encrypting every Content Key is AES. These are part
of DeliveryData elements. These are encrypted in the document, using the public key
of recipients.

Each DeliveryData element identifies a Delivery Key, which is a public key from a key
pair owned by the intended recipient. The Delivery Key is identified in the
DeliveryData element by including the X.509 certificate of the intended recipient. The
Delivery Key is used for encrypting Document Keys using an algorithm that is
described within the CPIX document, according to [XMLENC-CORE].

8. Key Management§

8.1. Key Encryption and Authentication in the CPIX Document§

8.1.1. Introduction§

8.1.2. Encryption§

Content Keys

Document Keys

Delivery Keys

The below figure gives the schema of encryption of the different keys when there are
several DeliveryData elements, one DocumentKeyelement and several ContentKey
elements. The Document Key allows reducing the numbers of ContentKey elements as
the Content Key they contain are all encrypted by the same Document Key.

Figure 39 Encryption relationships within the CPIX document with one Document Key.

The below figure gives the schema of encryption of the different keys when there are
several DeliveryData elements, several DocumentKey elements and several ContentKey

elements. In this example, the recipient identified in DeliveryData_2 is entitled to access a
subset of the Content Keys that are in the CPIX document while the recipient identified
in DeliveryData_1 is entitled to access another subset of the Content Keys.

Figure 40 Encryption relationships within the CPIX document with several Document Keys.

The document contains the following key for authenticating keys:

For every CPIX document, a MAC Key may be created. It is used to calculate the MAC
of every encrypted Content Key. The DeliveryData element identifies the MAC
algorithm and provides the MAC Key, encrypted with the Delivery Key, for each
recipient.

For authenticated encryption of Content Keys, every encrypted Content Key shall have a
MAC value and it shall be verified before attempting to decrypt any encrypted Content
Key. The purpose of the MAC is to protect against cryptographic vulnerabilities in the
receiving application; it is not used as a general-purpose authentication mechanism.

The MAC is calculated over the data in the CipherValue element (the concatenated IV and
encrypted Content Key) and stored in the ValueMac element under the Secret element
for each encrypted Content Key.

8.1.3. Authenticated Encryption§

MAC Key

Every element in the document that has an @id attribute can be signed according to
[XMLDSIG-CORE]. Furthermore, the document (including any other signatures) can be
signed as a whole.

Upon loading a CPIX document, implementations should verify that signatures are
present on entities that are expected to be signed and verify all digital signatures that
are present. Implementations should refuse to process a document if expected
signatures are missing or if the signatures cannot be verified or if the signers are not
trusted as authoritative sources for the signed data.

Implementations should sign any elements that recipients wish to authenticate. Note
that modifying any signed data will require any signatures on the data to be removed
and/or re-applied. This requires the appropriate consideration and trust model design in
content processing workflow creation (out of scope of this specification).

The following table gives the identification of the algorithms that shall be used for
encryption, signature, MAC creation.

Usage Algorithm

Content Key wrapping AES256-CBC with PKCS #7 padding

Encrypted key MAC HMAC-SHA512

Document Key wrapping RSA-OAEP-MGF1-SHA1

Digital signature RSASSA-PKCS1-v1_5

Digital signature digest SHA-512

Digital signature canonicalization Canonical XML 1.1 (comments

omitted)

For RSA, the recommended minimum key size is 3072 bits and is it not recommended to
use certificates that are signed using SHA-1.

8.1.4. Digital Signature§

8.1.5. Mandatory Algorithms§

A CPIX document can contain content protection information for multiple crypto-
periods, or period of time for content encrypted using key rotation.

When content is protected with key rotation, a CPIX document shall contain one or more
ContentKey elements and one or more ContentKeyPeriod elements, one of each per
crypto-period which the document covers. Each ContentKey element contains the key
material for a single crypto-period. The crypto-period itself is identified by a well-formed
ContentKeyPeriod element as described in § 7.4.14 ContentKeyPeriod Element.

Key rotation may be supported in complex workflows, with one entity requesting DRM
Signaling for multiple crypto periods, and another entity providing the requested
information (keys, DRM system-specific information for the crypto period, etc). Clause 9
of [DASHIF-IOPv5p6] defines three scenarios for key rotation. The decision for
encrypting content following one of these scenarios is made, most of the time, by the
entity requesting DRM signaling, the entity providing this information is not aware of it.
As a consequence, in some cases, the response will include some information that will
not be inserted in the MPD (if requested for DASH content). In more details:

The entity providing the DRM signaling shall insert the PSSH element and the
ContentProtectionData element under the DRMSystem element associated to all
content keys. The ContentProtectionData element shall be inserted in the MPD under
the ContentProtection element. The PSSH element may be inserted under the moov
box.

The entity providing the DRM signaling shall insert the PSSH element and the
ContentProtectionData element under the DRMSystem element associated to all
content keys. The ContentProtectionData element shall be ignored. The PSSH element
shall be inserted under the moov box and moof boxes of the segments that are
encrypted by this key.

CPIX supports expressing two-level key hierarchies, where each leaf key has exactly
one root key that is required in order to use the leaf key. Both root keys and leaf
keys are represented using ContentKey elements, with leaf keys indicated by the
presence of a @dependsOnKey attribute that references the root key as described in
clause § 7.4.7 ContentKey Element.

If a CPIX document includes at least one ContentKey element that has a
@dependsOnKey attribute, the content referenced by the @contentId attribute is fully

8.2. Key Rotation Support§

Manifest based key rotation signaling

In-band key rotation signaling

In-band key hierarchy

protected with key hierarchy. A CPIX document may include ContentKey elements
for leaf keys only, the referenced root key is then provided in a different document.

When using hierarchical keys, only the leaf keys shall be used to encrypt media
content. Therefore, root keys shall not be referenced by any ContentKeyUsageRule
elements.

The PSSH element under the DRMSystem element associated to the root key shall be
inserted under the moov box, while, for the leaf keys, it shall be inserted under the
moof boxes of the segments that are encrypted by this leaf key. The
ContentProtectionData element of the DRMSystem element associated to the root key
shall be inserted in the MPD. The entity providing the signaling uses the presence or
not of the @dependsOnKey attribute in the ContentKey element for knowing what
type of signaling it needs to generate for every key.

Note that not all DRM systems support key hierarchy.

In [MPEGCENC], several protection schemes that are not interoperable are defined. This
means that several encrypted versions for the same content in the clear are created if
the targeted devices support one or another protection scheme. While it may not be
recommended, it is possible to use the same Content Keys when encrypting these
different versions. In term of CPIX document, this means that several documents need
to be created, these documents will differ on the @commonEncryptionScheme attribute
under the ContentKey element which will take a different value depending on the
protection schemes. Note that depending on the DRM, some elements under the
DRMSystem element may also be different.

This clause provides best pactices for CPIX documents for some use cases. It provides
the minimum set of elements and attributes to expect for these use cases.

For the sake of simplicity, best pactices are considering three widely deployed and
supported DRMs, namely, FairPlay, PlayReady and Widevine. Each DRM comes with its
own signaling and some constraints. For example, it is very unlikely that FairPlay DRM
signaling is needed for a content key with a @commonEncryptionScheme value equals to

8.3. Content Keys with Several Protection Encryption Schemes§

9. CPIX Documents Best Practices§

cenc . PlayReady signaling is defined on this page, offering some flexibiliby but not
supporting all encrpytion modes defined in [MPEGCENC].

Disclaimer: This clause is not taking any commitment on the exact set of features
supported by every DRM. In addition, this can evolve over time.

These best practices can be found on GitHub and are:

One content key is provided in the clear. This key has a @commonEncryptionScheme
value equals to cbcs . HDCP data are attached to this content key in the form of an
HDCPDataelement. DRMSystem elements include the expected robustness level,
expressed in the terms defined by each DRM.

Two content keys are provided in the clear. They both have a
@commonEncryptionScheme value equals to cenc . Each DRMSystem element has a
@robustness attribute defining the expected robustness level for this DRM system
for using the content key.

In the first file, each content key is associated with a ContentKeyUsageRule element
that contains an @intendedTrackType attribute, hence associating each key to a list of
tracks associated to these values. In the second file, the exact same assocation is
expressed using a Label filter.

This is a continuation of one of the previous file where the content key are both
encryped with one document key for one recipent that is described under a
DeliveryData element.

Another continuation that describes the possiblity to sign some elements of the
CPIX document. In this case, one may want to ensure that the ContentKeyList
element is not modifed so that it is alway possible to decrypt the content ideentified
by the @contentId attribute that is part of the CPIX element. Note that, in this file,
the content keys are not encrypted, nothing prevents to also encrypt them and to
sign the corresponding ContentKeyList element.

As described in clause § 8.2 Key Rotation Support, there are several mechanisms for
enabling key rotation, hence, in case of DASH content, this means that the MPD is
different. The CPIX document may then contain different information depending on

An asset with one content key (OneContentKey.xml)

An asset with multiples content keys (KPTIntentedTrackType.xml , KPTLabelFilter.xml)

An asset with multiples content keys encrypted
(KPTIntentedTrackTypeEncrypted.xml)

An Asset with multiples content keys signed (KPTIntentedTrackTypeSigned.xml)

An asset with key rotation (KeyRotationIndex.xml , KeyRotationDate.xml ,
KeyHierarchy.xml)

https://learn.microsoft.com/en-gb/playready/packaging/mp4-based-formats-supported-by-playready-clients?tabs=case1
https://github.com/Dash-Industry-Forum/CPIX

the mode used. It is up to the receiveing entity to extract the relevant information
and create a functional MPD.

Within a CPIX document, the simplest model includes a ContentKeyPeriod element
and its associated KeyPeriodFilter element. This is shown in the first and second files,
using @index in the first file and @start , @end in the second file. The DRM signaling
data includes all information and it is the responsibility of the entity generating the
MDP to extract the relevant information depending on the MDP to be generated as
explained in clause § 8.2 Key Rotation Support.

The third file include an example with key herarchy, where all signaling for HDCP,
robustness level are attached to the root key only. The KeyPeriodFilter elements are
attached to the leaf keys. Note that the PSSH and ContentProtectionData elements
contains dummy data in this file.

Associating key per track and key rotations, these files show the possibilities of the
signaling in these cases. Key rotation can be also with key hierarchy, hence the
second file for this example. Associating these funtionalities show how filters can be
described in one ContentKeyUsageRule element.

Advanced Encryption Standard

Base Media File Format

Cypher Block Chaining

Content Delivery Network

Content Management System

Content Protection Information eXchange

Dynamic Adaptive Streaming over HTTP

Digital Right Management

An asset with key rotation and multiples content keys (KeyRotationAndKPT.xml and
KeyHierarchyAndKPT.xml)

10. Abbreviations§

AES

BMFF

CBC

CDN

CMS

CPIX

DASH

DRM

Electronic Program Guide

Frames Per Second

High Definition

High-bandwidth Digital Content Protection

High Dynamic Range

HTTP Live Streaming

International Organization for Standardization

Initialization Vector

Key IDentifier

Message Authentication Code

Media Presentation Description

Optional with Default value

Public Key Cryptography Standards

Protection System Specific Header

Rivest, Shamir, & Adleman

Standard Definition

Secure Hash Algorithm

Ultra High Definition

EPG

FPS

HD

HDCP

HDR

HLS

ISO

IV

KID

MAC

MPD

OD

PKCS

PSSH

RSA

SD

SHA

UHD

Uniform Ressource Identifier

Universally Unique IDentifier

Video On Demand

Wide Color Gamut

eXtensible Markup Language

XML Schema Definition

Guidelines for Implementation: DASH-IF Interoperability Points; Part 6 Content
Protection, version 5.0, January 2022. URL: https://dashif.org/guidelines/iop-v5/iop-v5/

R. Pantos. HTTP Live Streaming 2nd Edition. Internet Draft. URL:
https://datatracker.ietf.org/doc/draft-pantos-hls-rfc8216bis/

ISO/IEC 23001-7:2016: Information technology - MPEG systems technologies - Part 7:
Common encryption in ISO base media file format files, February 2016. URL:
https://www.iso.org/standard/68042.html

IETF RFC 6030: Portable Symmetric Key Container (PSKC), October 2010. URL:
https://www.rfc-editor.org/rfc/rfc6030

W3C® Recommendation 11 April 2013: XML Signature Syntax and Processing Version
1.1, Donald Eastlake, Joseph Reagle, David Solo, et al. (Second Edition), 10 June 2008.
URL: https://www.w3.org/TR/xmldsig-core/

W3C® Recommendation 11 April 2013: XML Encryption Syntax and Processing Version
1.1, Donald Eastlake, Joseph Reagle, 10 December 2002. URL:

URI

UUID

VOD

WCG

XML

XSD

References§

Normative References§

[DASHIF-IOPv5p6]

[HLS]

[MPEGCENC]

[RFC6030]

[XMLDSIG-CORE]

[XMLENC-CORE]

https://dashif.org/guidelines/iop-v5/iop-v5/
https://dashif.org/guidelines/iop-v5/iop-v5/
https://dashif.org/guidelines/iop-v5/iop-v5/
https://datatracker.ietf.org/doc/draft-pantos-hls-rfc8216bis/
https://datatracker.ietf.org/doc/draft-pantos-hls-rfc8216bis/
https://www.iso.org/standard/68042.html
https://www.iso.org/standard/68042.html
https://www.iso.org/standard/68042.html
https://www.rfc-editor.org/rfc/rfc6030
https://www.rfc-editor.org/rfc/rfc6030
https://www.w3.org/TR/xmldsig-core/
https://www.w3.org/TR/xmldsig-core/
https://www.w3.org/TR/xmldsig-core/
https://www.w3.org/TR/xmlenc-core/
https://www.w3.org/TR/xmlenc-core/

https://www.w3.org/TR/xmlenc-core/

W3C® Recommendation 5 April 2012: W3C XML Schema Definition Language (XSD) 1.1
Part 2: Datatypes, David Peterson et al. URL: https://www.w3.org/TR/xmlschema11-2/

[XMLSCHEMA11-2]

https://www.w3.org/TR/xmlenc-core/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/

